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Abstract

We consider nonisochronous, nearly integrable, a priori unstable Hamiltonian systems with a
(trigonometric polynomial) Qu)-perturbation which does not preserve the unperturbed tori. We
prove the existence of Arnold diffusion with diffusion tinig = O((1/x) In(1/w1)) by a variational
method which does not require the existence of “transition chains of tori” provided by KAM theory.
We also prove that our estimate of the diffusion tiffieis optimal as a consequence of a general
stability result derived from classical perturbation theory.
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Résumé

Nous considérons des systemes hamiltoniens presque intégrables, non isochrones et a priori
instables par une perturbation el qui ne préserve pas tels quels les tores invariants du systéme
non perturbé (et qui est un polyndme trigonométrique). Nous montrons I'existence de la diffusion
d’Arnold avec un temps de diffusiofi; = O((1/1)In(1/w)) par une méthode variationnelle qui
n'impose pas de passer par des “chaines de tores de transition” et par la théorie KAM. Nous montrons
aussi que notre estimation du temps de diffugigrst optimale : c’est une conséquence d’un résultat
général de stabilité qui provient de la théorie classique des perturbations.
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1. Introduction and main results

Topological instability of action variables in multidimensional nearly integrable
Hamiltonian systems is known as Arnold Diffusion. For autonomous Hamiltonian systems
with two degrees of freedom KAM theory generically implies topological stability of the
action variables, i.e., under the flow of the perturbed system the action variables stay
close to their initial values for all times. On the contrary, for systems with more than two
degrees of freedom, outside a large set of initial conditions provided by KAM theory, the
action variables may undergo a drift of order one in a very long, but finite time called
the “diffusion time”. Arnold first showed up this instability phenomenon for a peculiar
Hamiltonian in the famous paper [2].

As suggested by normal form theory near simple resonances, the Hamiltonian models
which are usually studied have the forfi(Z, ¢, p,q) = (I?/2) + © - I + (p?/2) +
g(cosq — 1) + enf(, ¢, p,q) Wheree and u are small parameters, := n1 + no,

(I1, I, p) € R" x R are the action variables aiid, ¢) = (¢1, ¢2,q) € T" x T are the angle
variables. In Arnold's modah, I e R,w =1, f(I, ¢, p,q) = (C0Sqg — 1)(Sing1 + COSp2)
and diffusion is proved fop exponentially small w.r.t,/e. Physically HamiltonianH#
describes a system af; “rotators” andny harmonic oscillators weakly coupled with a
pendulum through a perturbation term.

The mechanism proposed in [2] to prove the existence of Arnold diffusion and thereafter
become classical, is the following one. Fer= 0, the Hamiltonian system associated
to H admits a continuous family of-dimensional partially hyperbolic invariant tori
T ={peT", (I1,Ib) =1, ¢ = p =0} possessing stable and unstable manifolds
Wo(T1) = W (1) ={p € T", (I1,12) =1, (p%/2) + e(cosg — 1) = 0}. The method
used in [2] to produce unstable orbits relies on the constructiony 10, of “transition
chaing of perturbed partially hyperbolic torﬂ’l" close to7; connected one to another
by heteroclinic orbits. Therefore in general the first step is to prove the persistence
of such hyperbolic tori‘T," for © # 0 small enough, and to show that the perturbed
stable and unstable manifold&s’l‘j(TI") and W;j(TI“) split and intersect transversally
(“splitting problem”). The second step is to find a transition chain of perturbed tori: this
is a difficult task since, for general nonisochronous systems, the surviving perturbed tori
T,“ are separated by the gaps appearing in KAM constructions. Two perturbed invariant
tori Tl“ and Q}’f could be too distant one from the other, forbidding the existence of
a heteroclinic intersection betweewrlj(TI“) and Wl‘j(TI’f): this is the so-called dap
probleni. In [2] this difficulty is bypassed by the peculiar choice of the perturbation
fU,p, p,q) = (cosg — 1) f(p), whose gradient vanishes on the unperturbed Tori
leaving themall invariant also foru # 0. The final step is to prove, by a “shadowing
argument”, the existence of a true diffusion orbit, close to a given transition chain of tori,
for which the action variable$ undergo a drift of @1) in a certain timeT, called the
diffusion time

The first paper proving Arnold diffusion in presence of perturbations not preserving
the unperturbed tori has been [12]. Extending Arnold’s analysis, it is proved in [12] that,
if the perturbation is a trigonometric polynomial in the angleghen, in some regions
of the phase space, the “density” of perturbed invariant tori is high enough to allow the
construction of a transition chain.
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Regarding the shadowing problem, geometrical methods, see, e.g., [12-14,16], and
variational ones, see, e.g., [9], have been applied, in the last years, in order to prove the
existence of diffusion orbits shadowing a given transition chain of tori and to estimate
the diffusion time. We also quote the important papers [7,8] which, even if dealing
with Arnold’s model perturbation only, have obtained, by variational methods, very good
diffusion time estimates and have introduced new ideas for studying the shadowing
problem. For isochronous systems new variational results concerning the shadowing and
the splitting problem have been obtained in [4—6].

In this paper we provide aalternative mechanisrto produce diffusion orbits. This
method is not based on the existence of a transition chain of tori: we avoid the KAM
construction of the perturbed hyperbolic tori, proving directly the existence of a drifting
orbit as a local minimum of an action functional. At the same time our variational approach
achieves the optimal diffusion time. We also prove that our diffusion time estimate is the
optimal one as a consequence of a general stability result, proved via classical perturbation
theory. As in [12] we deal with a perturbation which is a trigpnometric polynomial in the
angles and our diffusion orbits will not connect any two arbitrary frequencies of the action
space, even if we manage to connect more frequencies than in [12], proving the drift also
in some regions of the phase space where transition chains might not exist. Clearly if the
perturbation is chosen as in Arnold’s example we can drift in all the phase space with no
restriction. The results proved here have been announced in [3].

In this paper we will assume, as in Arnold’s paper, the parameterbe small enough
in order to validate the so-called Poincaré—Melnikov approximation, when the first-order
expansion term inu for the splitting, the so-called Poincaré—Melnikov function, is the
dominant one. For this reason, through this paper we will fix the “Lyapunov exponent”
of the pendulune := 1, considering the so-called “a priori unstable” case. Actually our
variational shadowing technique is not restricted to the a priori unstable case, but would
allow, in the same spirit of [4—6], once a “splitting condition” is someway proved, to get
diffusion orbits with the best diffusion time (in terms of some measure of the splitting).

We will consider nearly integrableonisochronousiamiltonian systems defined by:

2 2

Hu=7+%+(00&1—1)+Mf(l,s0,p,q,t), (1.1)

where (g, q,1) € T? x T x T1 are the angle variables/, p) € R¢ x R! are the action

variables andk > 0 is a small real parameter. The Hamiltonian system associatedyith
writes

¢=1+pof, fz—ua‘pf, g=p+undpf, p=sing—pud,f. (Sw)

The perturbationf is assumed to be a real trigonometric polynomial of orliein ¢
andr, namely?

L i, pog) = fon._1U, p,g) for all (n,1) € Z¢ x Z with |(n,1)| < N whereZ denotes the complex
conjugate ot € C.



616 M. Berti et al. / J. Math. Pures Appl. 82 (2003) 613-664

fdoo.poa =Y furll, p,g)e" 0. (1.2)

[(n,DISN

The unperturbed Hamiltonian systeifg) is completely integrable and in particular the
energyll.z/z of each rotator is a constant of the motion. The problerrabld diffusion
in this context is whether, for # 0, there exist motions whose net effect is to transfer
O(1)-energy among the rotators. A natural complementary question regards the time of
stability (or instability) for the perturbed system: what is the minimal time to produce an
O(1)-exchange of energy, if any takes place, among the rotators?

For simplicity, even if it is not really necessary, we assufmé be a purely spatial
perturbation, namely (¢, g, 1) = Zo<|(n,z)|<1v Jui1(@)expi(n - ¢ +It)). The functions
fu.1 are assumed to be smooth.

Let us define the “resonant we®y, formed by the frequencies “resonant with the
perturbation”:

Dy :={weR?|3(n,1) €29 st. 0<|(n,))] <N andw - n +1 =0}
= U Euw (1.3)

0<|(n,)|<N

where E,; :={w e R? |w - n + 1 = 0}. Let us also consider the Poincaré—Melnikov
primitive:

I’ (w, 6o, vo0) 1=—/[f(wt+<po,qo(t),t+90)—f(wt+</)o, 0,7+ 6o)] dr,
R

where go(t) = 4arctariexpr) is the separatrix of the unperturbed pendulum equation
g = sing satisfyinggo(0) = 7.

The next theorem states that, for any connected compaher®y,;, w;, wr € C, there
exists a solution ofS,,) connecting a Qu)-neighborhood ot; in the action space to a

O(u)-neighborhood ofvr, in the time-intervally; = O((1/w)| In w|).

Theorem 1.1.LetC be a connected component®f;, w;, wr € C and lety 1[0, L] — C
be a smooth embedding such that0) = w; and y(L) = wr. Assume that, for all
w:=y(s) (s [0, L], I'w,-,) possesses a nondegenerate local minin(agh ¢g).
ThenVvn > 0 there existgug = uo(y,n) > 0andC = C(y) > 0 such thatvO < u < uo
there exists a solutioZ,, (1), ¢, (1), pu (1), . (¢)) of (S,) and two instants; < 72 such
that 7, (t1) = w; + O(), I, (r2) = wF + O(u) and

T2 — 1l < —|Inpl. (1.4)

N =1

Moreoverdist(1, (), y ([0, L])) < n forall 71 <t < 1.
_ Inaddition, the above result still holds for any perturbatjetf + 1 f) with any smooth
flo,q,1).
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We can also build diffusion orbits approaching the boundarieBpfat distances as
small as a certain power of: see for a precise statement Theorem 6.1.

Theorem 1.1 improves the corresponding result in [12] which enables to connect
two frequencies»; and wr belonging to the same connected comporént DC for
N1 =14dN and with disf{w;, wr}, Dn,} = O(1). Such restrictions of [12] in connectlng
the action space through diffusion orbits arise because transition chains could not exist in
all C c D}, (see Remark 2.2). Unlikely our method enables to show up Arnold diffusion
between any two frequencies;, wr € C C D, and along any path, since it does not
require the existence of chains of true hyperbolic tori§f)

Theorem 1.1 also improves the known estimates on the diffusion time. The first
estimate obtained by geometrical method in [12]7is= O(exp(1/1?)). In [13,14,16],
still by geometrical methods, and in [9], by means of Mather’s theory, the diffusion time
has been proved to be just polynomially long in the splittingithe splitting angles
between the perturbed stable and unstable manifwgé‘(zu“) at a homoclinic point
are, by classical Poincaré—Melnikov theory.Q). We note that the variational method
proposed by Bessi in [7] had already given, in the case of perturbations preserving all the
unperturbed tori, the diffusion time estimake = O(1/x2). For isochronous systems the
estimate on the diffusion tim&; = O((1/w)|Inu|) has already been obtained in [4,5].
Very recently, in [14], the diffusion time (in the nonisochronous case) has been estimated
asT; = O((1/w)|Inw|) by a method which uses “hyperbolic periodic orbits”; however
the result of [14] is of local nature: the previous estimate holds only for diffusion orbits
shadowing a transition chain close to some torus run with Diophantine flow.

We add that in [15] it was already conjectured that the optimal diffusion time in the
a priori unstable case should g = O((1/w)| In w|).

Our next statement (a stability result) concludes this quest for the minimal diffusion
time T,: it shows the optimality of our estimaf® = O((1/w)| In w|).

Theorem 1.2.Let f (1, ¢, p, q, ) be as in(1.2), where thef,,; (|(n, )| < N) are analytic
functions. Thewk, 7, 7 > 0 there exisiu1, ko > 0 such thatvO < u < u1, for any solution
(I(@®), @), p),q (1)) of (S,) with |7 (0)] <7 and|p(0)| < 7, there results

1
|1() —1(0)| <« Vtsuchthaﬂt|<ﬂln—. (1.5)
T

Actually the proof of Theorem 1.2 contains much more information: in particular the
stability time (1.5) is sharp only for orbits lying close to the separatrices. On the other hand,
the orbits lying far away from the separatrices are much more stable, namely exponentially
stable in time according to Nekhoroshev type time estimates, see (7.4) and (7.11). Indeed
the diffusion orbit of Theorem 1.1 is found close to some pseudo-diffusion orbit whose
(¢, p) variables move along the separatrices of the pendulum.

As a byproduct of the techniques developed in this paper we have the following result
(proved in Section 6) concerning “Arnold’s example” [2] where

Ty ={I =w, (per, p=q=0}

are, for allw € R?, even foru # 0, invariant tori of(S,).
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Theorem 1.3. Let f(p,q.1) := (1 — cosg) f(¢,1). Assume that for some smooth
embeddingy : [0, L] — RY, with y(0) = w; and y (L) = wr, Yo = y(s) (s € [0, L)),
I'(w,-,-) possesses a nondegenerate local minintggh ¢g). Thenvn > 0O there exists
wo = wo(y,n) > 0,andC = C(y) > 0 such thatvO < u < ug there exists a heteroclinic
orbit (n-close toy) connecting the invariant torf,,, and7,,,. Moreover the diffusion time
T, needed to go from a-neighborhood of/,,, to a ;.-neighborhood of,,,. is bounded by
(C/w)|Inu| for some constart.

The method of proof of Theorem 1.1 (and Theorem 1.3) relies on a finite-dimensional
reduction of Lyapunov—Schmidt type, variational in nature, introduced in [1] and later
extended in [4—6] to the problem of Arnold diffusion. The diffusion orbit of Theorem 1.1
is found as a local minimum of the action functional close to some pseudo-diffusion orbit
whose(p, g) variables move along the separatrices of the pendulum. The pseudo-diffusion
orbits, constructed by the Implicit Function Theorem, are true solutior(sof except
possibly at some instant, fori = 1,...,k, when they are glued continuously at the
section{g =&, mod 2rZ} but the speed&p, (6;), ¢,.(6;)) = (1,.(8;), p.(6;)) may have
a jump. The time intervally = 6; 11 — 6; is heuristically the time required to perform
a single transition during which the rotators can exchange)@nergy, i.e., the action
variables vary of Qu). During each transition we can exchange only.®energy because
the Melnikov contribution in the perturbed functional i/). Hence in order to exchange
O(1) energy the number of transitions required willlbe O(1/uw).

We underline that the question of finding the optimal time and the mechanism for which
we can avoid the construction of transition chains of tori are deeply connected. Indeed the
main reason for which our drifting technique avoids the construction of KAM tori is the
following one: if the time to perform a simple transitidi is, say, justly = O(|In k)
then, on such “short” time intervals, it is valid to approximate the pseudo diffusion orbits
with unperturbed solutions living on the stable and unstable manifolds of the unperturbed
tori W9 (T,) = W(T,,) = {I =w, ¢ € T, p?/2+ (cosg — 1) = 0}, when computing the
value of the action functional. In this way we do not need to construct the true hyperbolic
tori 7. (actually for our approximation we only need the time for a single transition to be
TS < 1//,L)

The fact that it is possible to perform a single transition in a very short time interval
like Ty = O(]Inw|) is not obvious at all. In [7] the time to perform a single transition, in
the example of Arnold, is @ /u). This transition time arises in order to ensure that the
variations of the kinetic part of the action functional associated with the rotators are small
compared with the (positive definite) second derivative of the Poincaré—Melnikov primitive
at its minimum point. Unfortunately this time is too long to use a simple approximation of
the functional. The key observation that enables us to perform a single transition in a very
short time interval concerns the behavior of the “gradient flow” of the unperturbed action
functional of the rotators. This implies a sort of a priori estimate satisfied by the minimal
diffusion orbits, see Remark 6.1. We think that estimate (6.18) is interesting in itself. In this
way we can show that the variations of the action of the rotators are small enough, even
on time intervals; <« 1/, and do not “destroy” the minimum of the Poincaré—Melnikov
primitive.
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When trying to build a pseudo-diffusion orbit which performs single transitions in very
short time intervals we encounter another difficulty linked with the ergodization time. The
time to perform a single transitiofi must be long enough to settle, at each inséanthe
projection(6;, ¢;) of the pseudo-orbit on the tord¥ 1 sufficiently close to the minimum
of the Poincaré—Melnikov function, i.e., the homoclinic point (in our method it is sufficient
to arrive just @1)-close, independently of, to the homoclinic point). This necessary
request creates some difficulty since our pseudo-diffusion orbit may artiug-€ose in
the action space to resonant hyperplanes of frequencies whose linear flow does not provide
a dense enough net of the torus. The way in which this problem is overcome is discussed in
Section 5: we observe a phenomenon of “stabilization close to resonances” which forces
the time for some single transitions to increase. Anyway the total time required to cross
these (finite number of) resonances is §till= O((1/1) In(1/1)), see (5.13) and the proof
of Theorem 1.1. This discussion enables us to prove optimal fast-Arnold diffusion in large
regions of the phase space and allows to improve the local diffusion results of [14].

We need therefore some results on the ergodization time of the torus for linear flows
possibly resonant but only at a “sufficiently high order”. We present these results in
Section 4. We point out that the main result of this section, Theorem 4.2, implies as
corollaries Theorems B and D of [11], see Remark 4.1. It is of independent interest and
could possibly improve the other results of [11].

This work is a further step of a research line, started in [4-6], for finding new
mechanisms to prove Arnold diffusion. We expect that the variational method developed
in this paper could be suitably refined in order to prove the existence of drifting orbits in
the whole action space and then to prove such results for generic analytic perturbations
too. Another possible application of these methods could regard infinite-dimensional
Hamiltonian systems where the existence of “transition chains of infinite-dimensional
hyperbolic tori” is quite far from being proved.

The paper is organized as follows: in Section 2 we perform the finite-dimensional
reduction and we define the variational setting. In Section 3 we provide a suitable
development of the reduced action functional. In Section 4 we prove the new results on
the ergodization time. In Section 5 we define the unperturbed pseudo-orbit. In Section 6
we prove the existence of the diffusion orbit. In Section 7 we prove the stability result, that
is to say the optimality of our diffusion time.

Notations. Through this paper the notatiarizy, ..., zx) = O (1)) will mean that, for a
suitable positive constait(y, f) > 0, la(z1, ..., zp)| < C(y, Hlb(W)].

2. The variational setting and the finite-dimensional reduction

When the perturbationf (¢, ¢,1) = Z\("J)KN fui(@)expi(n - ¢ + Ir)) is purely
spatial? system(S,,) reduces to the second-order system

2 We will develop all the computations fgf. All the next arguments remain unchanged if the perturbation is
f + uf, see the proof of Theorem 1.1.



620 M. Berti et al. / J. Math. Pures Appl. 82 (2003) 613-664

with associated Lagrangian

S Y]
L09.9.9.4.0 =5 + L+ A= cosg) — uf (9.q.0). (2:2)

Using the Contraction Mapping Theorem we will prove in Lemma 2.1 that, near the
unperturbed solutiongw(t — 0) + ¢o, go(t — 0)) living on the stable and unstable
manifolds of the unperturbed tofi,,, there exist, foru small enough, solutions of
the perturbed system (2.1) which connect the sectigns: ¢*,g = —7,t = 6%} and
{o =¢ ,q =m,t =06~} (under some assumptions). The diffusion orbit will be a chain
of such connecting orbits.

We first introduce a few definitions and notations. Fot= (87,07, ¢™",¢7) €
R2 x R with 6+ < 6~ we defineT; := 6~ — 61 and the “mean frequencys; € R? as
wy = (¢~ —@h)/( —61). The “small denominator” of a frequenaye R? is defined
by:

B(w) = Bn(w) = 0<‘(Tliﬂ<N|n-w+l|. (2.3)

B(w) measures how close the frequengyies to the resonant weby defined in (1.3).
We use the abbreviatiofy, for 8(w,). We shall always assume through this paper #hat
stays in a fixed bounded set containing the cyrve

For T large enough, there exists a uniqiieperiodic solutionQr of the pendulum
equation, of small positive energy withr (0) = —z, Q7 (T) = 7. MoreoverQr satisfies
Vrel[0,T/2)U(T/2,T],

lor 07 ()| < K1e7 X270 a7 (07 (T — ) ()| < Kpe K20
and
|07 (1) = goo ()] + [ 07 (1) — Goo ()| < K172,
|07 (1)| < Kymax{e X2 e K2T=0}, (2.4)
for some positive constanfs; and K>, whereg is defined by:
Goo(t) = qo(t) — 27 if 1 €[0,T/2), Goo() =qo(t —T) ifre(T/2,T].

Lemma 2.1.There existgi2 > 0 and constant€, C1, ¢, c1 > 0 such thatv0 < u < w2,
Vi =(67,0",¢0%, ¢7) such thatCoﬂf > u and C1|Inu| < T < CoBy/1e there exists
a unique solution(e, (1), ¢, (1)) := (¢u..(1), .. (1)) of (2.1), defined forr € (6F — 1,
6~ + 1), satisfyingp, (6%) = ¢*, g, (6%) = Fr and

(i) |ou®) — )| <en(l+cuT?)/BE,  |out) —w| <en/Ba,

- ~ i . B (2.5)
(i) |gu(®)— 0, —0h)| <cu, g () — O, (t —0H)| <,
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whereg(t) := w; (t — %) + ¢T. Moreoverg,, ; (1), ¢, (1), qu..(t) and g, ;(t) are C*
functions of(z, A).

The proof of Lemma 2.1 is given in Appendix A.
Remark 2.1.Roughly, the meaning of the above estimates is the following:

(1) We have imposed’1|Inu| < T, :== 6~ — 6% so that by (2.4), on such intervals of
time, the periodic solutio®r, is O(u) close to “separatricesjy, of the unperturbed
pendulum.

(2) Estimate (ii) implies that for ~ (6% + 67)/2 the perturbed solutiop, may have
O(uw) oscillations around the unstable equilibrium of the pendudusm 0, mod 2r,
which is exactly what one expects perturbing with a gengr&bn the contrary for the
class of perturbations considered in [2] A&, ¢, 1) = (1 — c0q) f (¢, t) preserving
all the invariant tori, estimate (i) can be improved, getting fil@x(t)— Or, (¢ —6M)],
g, (1) — O, (r —61)[} = O(u maxexp(—Clr — 67, exp(—=Clr — 60~ )}).

(3) For g, ~ /iv estimate (i) becomes meaningless: for a mean frequepauch that
n-w; + 1~ /i for some O< |(n,1)| < N the perturbed transition orbits, are no
more well-approximated by the straight ling&) := ¢ + w;, (t — 07).

Remark 2.2. Let us defineDf, ={weR||w-n+I>8B, YO<|@nD| <N} In
[12] it is proved that hyperbolic invariant tofi;," of system §,,) exist for Diophantine
frequencieso € Dfi,ll for somef; = O(1) and someV; = O(dN) > N, namely avoiding
more “resonances with the trigopnometric polynomyiékhan justN. The presence of such
“resonant hyperplanes, ;” for N < |(n,1)| < N1 may be reflected in estimate (i) by the
term /LTAZ. However such term, for our purposes, can be ignored.

From this point of view Lemma 2.1 could perhaps be interpreted as the first iterative
step for looking at invariant hyperbolic tori in the perturbed system bifurcating from the
unperturbed ones.

By Lemma 2.1, for O< 1 < 2, we can define on the set

C
Ap = {)» =0",07, 9", 97) ‘ CoB? > . Callnp| < T < ob }
n
the Lagrangian action functional, : A, — R as

-
Gu() =Gu0",67, 9", ¢7) 1=fﬁu(wu(t),%(t),qu(t),éu(t),t) dr.  (2.6)

o+
We have:

Lemma 2.2.G , is differentiable andwith the abbreviationg, ¢ for ¢,,, g,,)
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Vot Gu(d) = —p(O™),

1 1
I+ Gulh) = 5|60 )[*+ 5420 +cosg 05) = 1+ uf (gt 7.6,
Vo-Gu(d) =¢(07),

1. _.2 1 .2 n— — — —
dg-Gu(h) = — §|<p(9 )7+ 54°67) +cosq(67) = 1+ uf (97,767 ).
Proof. By Lemma 2.1 the mayr, 1) = (@un (), @ur (@), qu.r (), ¢ux (1)) is C1 onthe

set{(r,1) € A, x R|6T <1 <607 }. HenceG,, is differentiable and

.
¥+ G =—Lu(e",0(0F), —,4(01),07) + / @(s) - dg+@(s) + G(5)g+q (s) ds
0+
.
+ / sing (s)dp+q(s) — 119y f (¢(s), 4 (s),5) - dg+ @ (s)

o+
— ,uaqf((p(s), q(s), s)39+q(s) ds.
Integrating by parts and using th@t, ,., ¢,..») satisfies (2.1) i+, 6~), we obtain:
89+ G () = —Lu 9+, O, =, 4(07).0) + [§(5)89+q (5) + §(5) - g+ 0(5) ]y

Now g, ,(61) = —x for all A henceg(61) + 9y+q(0") = 0. Similarly we getp(6™) +
0g+@(OT) =0,3,+q (@) =0, dp+9 (@) = 0. As a consequence

1. 1,
9+ Gp(d) = §|¢|2(9+) + §q2(9+) + (cosq(0F) = 1) + puf (9", 7, 67).
The other partial derivatives are computed in the same way.
For 8 > 0 fixed, denoting.; = (6;, 6;+1, i, ;i +1), we define on the set:

. B
AM,k':Au,k
={A=(01.. 00 01,...., 00 eR* xRM | VI<i <k =1, di € Ay, By, > B},

the reduced action functiondl, : A, x — R as

k=1
|y |?
Fu) = w191 =~ =61+ uI" (@1.61.91) + LF @1.61.90) + ) Gu(h)
i=1
lwp|? s
— WFQk + Ok + ul” (wF, Ok, i) — wF (wF, Ok, ¢i),

2
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where
0
I'(w, o, wo) := — / [f(a)t + 90, qo(t),t + 6p) — f(wt + ¢o, 0, t ~|—90))] de, (2.7)
+00
I*(, 60, 9o) := — / [f (01 4 0. q0(1). 1 + 60) — f (w1 + 0. 0.1 4 60))] di, (2.8)
0

are called respectively the unstable and the stable Poincaré—Melnikov primitive, and

g (n-9o+16p)

F(o,00,90) :=—foolo— Y.  ful:

_— (2.9)
0<|(n,D)|<N (- +1)
fu.1 := fn.1(0) being the Fourier coefficients gf(p, O, 7).

Critical points of the “reduced action functiondaF,, give rise to diffusion orbits whose
action variabled go from a small neighborhood af; to a small neighborhood @ér, as
stated in Lemma 2.3 below. The “boundary terms”

|y |?
wrep1 — 791 + ul(wr, 61, 1) + WF (w1, 61, 91)
and
lwp|? s
—WF@k + 5 Or + I (wF, Ok, o) — wWF (wF, Ok, ¢r)

have been added also to enable us to find critical point§,pfwn.r.t. all the variables
(including®1, ¢1, Ok, ¥k).

More precisely, forh = (8,¢) € A, we define the pseudo diffusion solutions
(@1, qu,2) On the interval61, 6] by

(0020, 403 ®) = (Q2; (1), i, (1) + 21 — 1)) fort € [6;, 6111,

where (@1, (), g2, () are given by Lemma 2.1. The pseudo diffusion solutions
(91, qu,2) are then continuous functions which are true solutions of the equations of
motion (2.1) on each interva;, 6;1), but the time derivativegp,, ., ¢,.,») may undergo

a jump at timey;. We have

Lemma 2.3.1f . = (6, ) € A, is a critical point of F,, then (g, 5(1). ¢, ;) is a

solution of (2.1)in the time interval(f1, 6x). Moreoverg,, (61) = w; + O(u), ¢ () =
wr + 0(w), i.e., ((pu’i, qﬂj) is a diffusion orbit betweemw; and wr with diffusion time
Tq = |6k — 61].
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Proof. By Lemma 2.2 ifV,, }‘M(X)Nz 0, then for 2<i <k —1, ¢, 5(6) = $,560")
and 9,501 = o + O(w), $,.:6k) = or + O(w). Moreover, if Vy, F, (1) = 0 and
3, Fu (L) = 0 then (for 2< i < k — 2), qi i(é;f) = c]i ;(éi_)- Now, by Lemma 2.1

and (2.4),(}”’1(9?) = ¢o(0) + O(u). Hencec}%;(él*) = %,i(éi_) and the proof is
complete. O

3. The approximation of the reduced functional

In order to prove the existence of critical points of the reduced action functional
F, thanks to the properties of the Poincaré—Melnikov primitiy&®, -, -) we need an
appropriate expression &, , see Lemma 3.5. We shall exprelSs as the sum of a function
whose definition contains thE(w, -, -) (for which we can prove the existence of critical
points) and of a remainder whose derivatives are so small that it cannot destroy the critical
points of the first function.

The first lemma gives an approximation@f, (defined in (2.6)).

Lemma 3.1.For 0 < u < ug, for A € A, we have

G,(A) = }M +/LFS((1))\,9+, (p+) +/LF”(0))\,9_,(/)_)
K’ 2 (06— —6t)
-
—uff(@(t),O, 1) dr + Ro(, 1), (3.1)
o+
where
2 2
1+ uT?)
Y, Ro(ju, 1) =o<7“ ﬁz“ A TA). (3.2)
A

Proof. By Lemma 2.1, we can write

Pua(t) =) + v (1), G (1) = 01, (1 = 07) + w1 (1),

where

V(0 =0,,07) =0, [[VpsllLo@+.6-)=OW/Br),
lvuallpoe@+o-) = O((4/B2) (14 nTE)) and wyu (@) =w,s(07) =0,
. allLoo@+.o-y + lwpallLe@+,0-y = O(w).

In the following, in order to avoid cumbersome notation, we shall use the abbreviations
v, w, Q for v, x, wua, Or, (- — 071), the dependency w.r.t and . being implicit. We
have:
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1. o o1, 11,
GM(A>=f§|¢<t>| +<p(r)~v<r>+§|v<t>| +50°() + QW) + 50°(1)
0+
.
+f[1— cog Q1) + w(®))] — wf (8(6) + v(t), Q1) + w(t), 1) dr.

o+

Now sincev(®@*) =v(@~) =0 andw(@™) = w(@~) =0,

0~ 9~
f?o(t)-i)(t)dt=fm-o(t)dzzo
‘as 9+
and
0~ 9~ o—
/Q(t)u')(t)dt=/—Q(t)w(t)dt=/—(SinQ(t))w(t)dt.
o+ o+ o+

As aresultG, (») = G (%) + R1(2), where

0y (122, 102 _ _ 5
G, = [ Slel"+ 507+ (1 —cosQ) — uf(@. Q.1).
9+

1., 1, .
Rl(x)=/§|v| +§w + (cosQ — cogQ + w) — wsinQ)
o+

—uf(@+v, Q4+ w, 1)+ uf(@, Q.1).

We shall first prove thatV R1| = O(u2(1+ nT2)T5/B2). We havedy+ R1 = r1+r2+r3+
ra + rs + rg, where

.
d
r1:=/i)-E(39+v)—ua‘pf(¢+v,Q+w,t)-(39+v),
o+
4
r ::/u‘;a(agﬂu)—i—[Sin(Q—i—w)—sinQ—uaqf(@—i-v, 0 +w, )] (0p+w),

o+
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-
r3 = /(— sinQ + sin(Q + w) — w c0sQ)dy+ O,

9+
.
rai= uf[&pf(cﬁ, 0.1 = 8, f @ +v.0+w.0)]- 05,

9+
.
rg 1= u/[aqf@ 0.1)— 3, f @ +v. Q +w. 0] 0.

o+

1 1
re = —§|i)(9+)|2 - Eu')(9+)2.
Now v andw satisfy

{ —U(1) = pdy £ (@(1) +v(®), Q) + w(t), 1),
= (1) +sin(Q(1) + w(t)) = udy f (@) + v(t), Q) + w(t), 1) +siNQ(1).

Moreover, deriving w.r.t9+ the equality(0+) = 0 we obtain thatdy+v)(01) = —v(OT).
Similarly (8g+w)(@1) = —w (@), (dp+v)(@~) = 0 and (dp+w)(®~) = 0. Therefore an
integration by parts gives = [0(81)|2, r2 = w(61)2 hencelry| + |r2| = O(u?/B2).

By the properties ofQ7, 3+ Q is bounded in the intervald™,6~] by a constant
independent of.. Moreover—sinQ () + sin(Q(t) + w(t)) — w(t) cosQ(t) = O(w(1)?).
Thereforers = O(u2T).

We have also, for some positive constant

ral + Irsl < euT| sup |- 00|+ [05-30|][ sup (joo)|+ [w()])].
te[0+,0-1 tel6+,0-]

Since dy+@ is bounded independently of, we have by Lemma 2.1r4| + |rs| =
O(u?(1+ uTATy/p?). Still by Lemma 2.176 = O(11?/p?). The estimate of the other
derivatives ofR; is obtained in the same way.

We now develop59 (1) as

llp~ —¢t?

A— Ad~ FS 79+a + Fu 59_7 B
26— —6n TH (@, 07, 07) + I (2,07, ¢7)

GO =

-
- Mff(fﬁ(t),O, 1) dr + Ro(A) + R3(M),

o+

where
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0~ 75
1. 1.
Rz(x)zféQz(t)Jr(1—cosQ(t))dt=/EQ%(t)Jr(l—cosQTA(t))dt, (3.3)
o+ 0

0-
R3()") = / _M[(f((ﬁ(t)v Q(t)s t) - f(@(t)s 07 t)] dr — Mrs(w)\79+s §0+)
o+

- Mru(wlsg_v (/)_)

There remains to prove estimate (3.2) f@iR; and VR3. By (3.3) 9,+ Rz = 0 and
d9+ R2(1) = —dy- R2() is the energy of thd -periodic solutionQ7, of the pendulum
equation. Now this energy is@ “2’+). Hence (provided; is large enough)VR>(1)| =
o(1?).

In order to estimate the derivatives &, let us defineg(p, q,t) := f(p,q,t) —
f(p,0,t). We have

.
R3(}) =/—Mg(¢(t), O@t), 1) dt — uI* (wp, 0%, 1) — uI (w3, 07, 97)
o+
= u(az(n) + ba(v),

where
T:./2 o0
az(A) := — f g(w+¢+,Qn(t>,t+9+)dt+/g(w+so+,qo(t),t+9+>dt,
0 0
0
b3(L) == — f gt +¢~, Qr,(t+T),1+67)dr
=Ty/2
0
+/g(th+(p_,qo(t),t+9_)dt.
—00
We have:
T)./2
az(\) = — / [g(wnt + 0T, O, (1), 1 +60™) — g(wrt + 9T, qo(), 1 +67)]
0

o0

+ / glwrt + 9T, qo(0), 1 +607).
T,/2
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Recalling that sup o1z 19 Q1 (1 = O(€™2"), SURc(0.7/2) | 27 (1) = qo()| = O(e™**"),
it is easy to see that the derivatives of the first integral ax@, & 2”*) = O(un)
(still provided C; is large enough). Moreover, using théig(wit + o™, qo(t), 1)| +
18pg(@nt + @™, qo(1), D] + 1d,8(wrt + ¢, qo(t). 1)]) = Olgo(t) — 2) = O(e™2") for
t € (Th/2,+00), we find that the derivatives of the second integral afg)Cas well.
HencegVaz(A)| = O(u). The same estimate holds fay. We then conclude thatR3(A) =
O(u?), which completes the proof of Lemma 3.10

In Section 6 we will look for a critical point af, in the set:

Ei={A=(1,....00,01,....,00) ERE xR | 0, = 0; + b;, ¢ = i +ai,
|bil < 27, |a;| < 27}, (3.9)

wherek, @;, 6; will be defined in Section 5. It will result thaf A,k (for someg > 0
depending on the curve). In particular, for allx € E

C .
Cilnp| <is1—6; < b o1 k-1 (3.5)
w

whereg; := B;, = B(w;) andw; 1= wy, := (pi+1 — ¢i)/(Bi+1 — 6;). Moreover we will
assume (see (5.8))

|wi+1 — @;| < ppu, where

w; :=M(1<i<k—1), wo = Wy, W : = WF (3.6)
Oiy1—0;

andp > 0 is a small constant to be chosen later (see (6.3)). For the time being, assuming
(3.5) and (3.6), we want to give a suitable expressioFpfin E. By Lemma 3.1, for
A € E, we have

k-1
1lgir1 — gil? w101 — oF gk — | o1+ |lwr|?
222 Gt 2 2

|2
.7:#()\) =

Ok

k

+ (T (@i-1, 0, 90) + T (@1, 0, 90)) + 1F (@1, 01, 91)
i=1

k—1 6i+1
Y u | floit—6) +¢i.0.0)dt — uF (wF. . @i)
i=1

k-1

+ > Ro(w, 1), (3.7)

i=1
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where |V, Ro(u, A)| satisfies (3.2). We shall writé,, in an appropriate form thanks to
the following lemmas. The first one says how close the “mean frequengjes'e to the
unperturbedy; .

Lemma 3.2.LetA = (61, ..., 6k, ¢1, ..., @) belong toE. Then

1 1
r — & :0(7) - o( ) (3.8)
Oit1—0; [N ]
Moreover,
I'(wi-1,6;, ) + ' (0, 0;, ¢i) = T'(@;, 0;, ¢i) + Ra(i),
whereVRs = O(1/]Inul). (3.9)

Proof. SetAf; := 6,11 — 0;, Aa; :== a;+1 — a; and Ab; := b; 11 — b;. By an elementary
computation we gab; — @; = —; Ab; / AB; + Aa; / A6;. By the definition ofE and (3.5),
estimate (3.8) follows.

From the definition of™, ' and the exponential decay g} it results thatd,, ™"
is bounded by a uniform constant, as well as its partial derivatives. Hence (3.9) is a
straightforward consequence of (3.8) and of (3.6}

Lemma 3.3.For0 < u < 4

0.
k i+1
uF(wl,el,m)—Zu/f(w,»u—9,->+¢,-,o,r>dt—uF<wF,9k,cpk>
i=1 0
k .
= RE(L him1, M), (3.10)

i=1

where, for alli®

VRL(w, i1, 9i—-1,6;, @is 0it1, 9it1)

W 2 ulBi — Bi—1l
=0 . 3.11
<ﬁ,-21<9,- —6;-1) * BZ(Biv1—6i) Y ) (311)

Proof. We have

Oiy1
- / f@i +wi(t—6;),0,1)dt = F(w;, 01, 9i+1) — F (i, 0, 9i)
0;

3 Inthe cases = 1,i =k we only haveRl = RL(1, 01. ¢1.62. ¢2) and RE = RE(u. 0 1. gox—1. 61 1)
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= (F(wi, 0i+1, 9i+1) — (F(@i-1.6;, ) + (F (i—1,6;, 9i) — F (@i, 0;, 91)).

whereF (o, -, -) is defined in (2.9). We obtain:

0:
k—1 i+1 k
WF (1,601,910 =) f S (¢i + @it = 6:),0,1) df — uF (r . 6. i) = ) _ R,
i=1 6 i=1

where

RE = RL(14, 0i-1, 9i—1, 01, 91, 041, @iy1) i= w(F (wi-1,6i, i) — F(wi, 6;, ¢))

d(n-ei+16;) 1 1
=k D <(n-wi1+z>_<n-wi+l>)'

O<|(n.DISN

Now we prove (3.11). Let us consider for exammleRé. We have:

39, RE = 119g, (F (wi—1.6;, 9i) — F (i, 0;, ¢i))

—wij—1 (<]
= M(aa)F(wi—l, i, i). ———— — 0 F (@i, 0i, ¢i) 7)

(0= 0i-) (Oi+1—6)
_“< Z fnllei(""ﬂi+l0,-)< 1 B 1 )) (3.12)
O<IDI<N (n-wia+h  (n-w+1)
where
n e (n-9o+160)
9w F (0, 00, po) = A 313
(w, 6o, vo) Z f’ll(n-w-|-l)2 (3.13)

O<|(n.hHISN

Estimate (3.11) follows immediately from (3.12) and (3.13). The other partial derivatives
of Ry can be estimated similarly.0

Finally, to get a suitable expression®f,, we find convenient to introduce coordinates
(b, c) e RITDK defined by (3.4) and

ci=a; —wib;, Vi=1 ...,k (3.14)

(we are just performing a linear change of coordinates adapted to the direction of the
unperturbed flow at eaghtransition(b;, a;) = b; (1, @;) + (0, ¢;)).

Lemma 3.4.We have
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1|¢,+1—¢, lwr|? lwr|?
E > — wrgk— 20 7
2 a—p) O T
lciv1 — cil? d
i+ i
_§ : + E Re(1, 0i, 9i, 0iv1, @iv1), (3.15)
A91+(b;+1—b) — 6 is Vi Vit i+
whereAd; :=6; 1 — 6; and*
VRE(1, 0i—1, 9i—1, 0i, @i, 0i41, @i+1) = O(AD;) = O(pp). (3.16)

Proof. Let {y;}i—
WY1 — WFPL as

1...k—1 be defined byp;+1 — ¢i = @;(0i+1 — 6;) + yi. We can write

k-1

w191 — wrpp =Y (@i-1— &g — & (piv1 — ¢1)) + ok (@1 — wF)
i=1

= Z((Cﬁpl — @) gi — @i 2 G412 — ;) — @iVi)

+ ¢k (@k—1 — oF). (3.17)
We can also write:
wr12,op?, S (@il @1l @i |2
- 01+ 2 9k=2<< > T3 >9i+ i1 — 9;))
i=1
lwp|?  |or—1/?
— 6, 3.18
+( e, 319)
k— 2
1I<pz+1—<p, 1yl _
0; SEELLE V. 3.19
Zz(e,+1—9) ; O S = (349

Summing (3.17), (3.18) and (3.19) we get

k— 2 2

1 lpit1— </)z |y | loF|

- +w1 1— 1 Ok
22 O — ¢ 2 2

k=1, -2 = 2
11 lyil2 |@; | |@; 1] _ _ _
— _ 0: 1 — @) -
ZZ(QIH—@, ;( > > i + (@1 — @) i + ¢ (D1 — ©F)

4 Fori =k we haveR§ = RE(1u. 0. ¢x).
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orl? _ @i
- Ok. 3.20
+ (1t - (3:20)

Substituting®; + a; for ¢; ande; + b; for 6;, we gety; = (aj11 — a;) — @; (bi+1 — b;).
Moreover the nonconstant terms in the right-hand side of (3.20) (i.e., those depending on
a;, b;) are the first one and

£ @2 |@i-1)? £
Z(CT)i—l —wj)a; + ( é — E )bi =: ZR’ (w, 0i, 0i)
i=1

i=1

with VR (i, 0;, ¢;) = O(A®;). Finally, expressing; in terms of(b;, ¢;) we get
Vi = (@i+1—a;) — @i (bi+1— b;) = (ci+1 — ¢;) + bi+1Aw;
and then from (3.20), developing the square, we get (3.16).

From (3.7) Lemmas 3.2, 3.3 and 3.4 we obtain the expressiaft,0fn the new
coordinatesb, ¢) required to apply the variational argument of Section 6.

Lemma 3.5.There existgs, C2 > 0 such thatvO < u < us, if

Bi = Comax{ u/ (641 — 092, 1001 — )32 Gz —0)"Y?),  (3.21)

then
1k71 lci 1_C'|2 k
.7: b,C - _ _ i+ 1 + F5)7é+b,—+(7)b+c
w0 2;A9'+(bi+l—bi) H; (@i, 6 i» @i ibi + ¢i)
+ R7(ba C)a (3.22)
k .
R7(b,c):= Z Ry(, bi—1,¢i—1, b, ci, bit1, cit1), (3.23)
i=1
where
IVR}| < Cappe. (3.24)

Proof. Itis easy to see that (3.6), (3.8) and (3.21) imply (provigdd small enough) that

1

1
<Bi<2Bi-1, |Bi—Bi-1l=0 . (325
B <2Bi1. |Bi— fial (ei—e,»_1+9;+1—9,»+“) (3.25)

Bi-1
2

5 Inthe cases = 1.i =k we haveR3 = R3(11, 01, ¢1. 62, 92) and RE = RE (11, 64_1. 1. 0. ).
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Noting thatd., = 9, andd,, = @; d,, + 94, , estimate (3.24) follows from (3.2), (3.9), (3.11),
(3.25) and (3.16). O

4. Ergodization times

In order to defines;, 6; (1 <i < k) we need some results, stated in this section, on the
ergodization time of the toruE := R!/Z! for linear flows possibly resonant but only at a
“sufficiently high level”.

Let 2 € R’; itis well known that, if2 - p £ 0,Vp € Z!\ {0}, then the trajectories of the
linear flow {27 + A};cr are dense ofi! for any initial pointA e T'. It is also intuitively
clear that the trajectories of the linear flgw@r + A},cr will make an arbitrary finé-net
(8 > 0) if £2 is resonant only at a sufficiently high level, namelyaf p £ 0, Vp e Z! with
0 < |p| < M(8) for some large enought (). Let us make more precise and quantitative
these considerations.

For anys2 e R! define the ergodization tiniE(s2, §) required to fill ! within § > 0 as

T(2,8)=inf{t eRy |Vx R/, d(x, A+[0,112 +2Z') <5},
whered is the Euclidean distance ardsome point oR!. T'(£2, 8) is clearly independent
of the choice ofA. Above and in what follows, inf is equal to+oc if E is empty. For
R >0let
a2, R)=inf{|p-2|| peZ', p#0, |p|<R}.

Theorem 4.1.VI € N there exists a positive constamt such that,vs2 € R/, V8 > 0,
T(2,8) < («(82,a;/8))~L. MoreoverT (£2, 8) > (1/4)a($2,1/48)~ L.

In the above theorem ! is equal to 0 ifx = +o0 and to+oo if « = 0.
Remark 4.1. Assume that2 is a C-t Diophantine vector, i.e., there exiét> 0 and
T > 1 —1 such thawk € Z! |k - 22| > C/|k|*. Thena($2, R) > C/R* and soT (£2, ) <
af /C8*. This estimate was proved in Theorem D of [11]. Also Theorem B of [11] is an
easy consequence of Theorem 4.1.

Theorem 4.1 is a direct consequence of more general statements, see Theorem 4.2 and
Remark 4.2. Let us introduce first some notations. Aidde a lattice oR!, i.e., a discrete
subgroup oR! such thaR!/A has finite volume. For a2 € R! we define:

T(A,2,8)=inf{teRy |Vxe R!, d(x,[0,1]12 + A) < s},

(T (A, £2,8) is the time required to havesanet of the torufR! /A endowed with the metric
inherited fromR!). ForR > 0, let

A*={peR'|VieA, p-rez} and Aj={peA*[0<|p|<R]
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(A* is a lattice ofR! which is conjugated tot). We define:
a(A, 2, R)=inf{|p-2|| peA}}.
The following result holds:

Theorem 4.2.VI € N there exists a positive constantsuch that, for all latticeA of R/,
V2 eRL V8 >0,T (A, 2,8) < (a(A, 2,a/8)~ L.

Remark 4.2. It is fairly obvious thatT (A, £2,8) > (1/4a(A, $2,1/45)~1. Indeed,
assume than\] ,; # ¥ and letp € A7 ,; be such thap - 2 = o := (A, £2,1/43). Let

x e Rl satisfyp - x =1/2. Thenvr € [0, 1/4a), VA € A,

lp-(x —1£2 2|

lx—@2+1| >
[Pl

246|p-x—tp-.9—p-k

andp-x —p-12€(1/2)+ Z, whereastp - 2| =ta < 1/4. Hencex — (1£2 + )| > 4.

In the next section we will apply Theorem 4.1 whén= (v, 1) € R¥*L. The proof
of Theorem 4.2 is given in the Appendix B. We could give an explicit expressiai. of
However it is not useful for our purpose and the constanishich can be derived from
our proof are certainly far from being optimal.

5. The unperturbed pseudo-diffusion orbit
Consider the sef; of “nonergodizing frequencies”

Ou:={weR!|[I(n,1) ez with0 < |(n, )| < M, andw -n +1=0} = U Epn,
hESM

where Sy == {h = 0,1) € Z¢\{0) x N|O < |h| < M, h # jh', ¥j € Z,
e @\ {0) x NyandE, = E,; :={weR?| (w,1) -h =w-n +1=0}. By Theo-
rem 4.1 (or Theorem 4.2, with = 27Z9*1), for § > 0, if w belongs to

0y ={weR?|w-n+1#0, Y0 < |(n, )| < M}, (5.1)

with M = 8ray1/8, then the flow ofw, 1) provides a5/4-net of the torug 9 +1.
Moreover ifw ¢ Qy then for all(n, 1) € Z4\{0} x Z,

|n-w+1] = n|distw, E, ;) > dist(w, E, ;) > dist(w, Q) > 0. (5.2)

By Theorem 4.1 (or Theorem 4.2), we deduce from (5.2) the estimate,

2r

T((w,1),8/4) < dist(w, Qur)’

(5.3)
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which measures the divergence of the ergodization fiti@, 1), §) asw approaches the
setQuy.

Definition 5.1. Given M > 0, a connected componeé@tof D§, andw;, wr € C, we say
that an embedding € C2([0, L],C) is a Q-admissible connecting curve betweep
andwr if the following properties are satisfied:

@ yO =w;, y(L)=o0r, lys)|=1Vs e (0, L),
(b) Vh = (n,1) € Sy, ¥s € [0, L] such thaty (s) € Ej, n - y(s) #0.

Condition (b) means that for all € Sy, y ([0, L]) may interseci), transversally only.
It is easy to see that condition (b) implies tHaty) = {s € [0, L] | y(s) € Qu} is finite
and that there exists > 0 such that for alls € Z(y), for all h = (n,[) € Sy such that
y(s) € Ep, ly(s) -nl/In| = v.

If a curve« is not admissible we can always find “close to it” an admissible pne
Indeed the following lemma holds.

Lemma 5.1. Let M > 0, C be a connected component B, w;,wr € C and let
a € C2([0, Lol, C) be an embedding witl(0) = w; anda(Lg) = wr. Then¥n > 0, there
exists a curver, Qr-admissible between; andwp, satisfyingdist(y (s), « ([0, Lo])) < n,
Vs € [0, L].

Proof. First it is easy to see that there exists an embedding0, L1] — C such that
«1(0) = wy, 01(L1) = wF, disaa(s), a([0, Lol)) < n/4 andVh = (n,1) € Sy, w1 ¢ Ep
(respectivelywr ¢ Ej;) or a1(0) - n # 0 (respectivelyk1(L1) - n # 0).

Let r > 0,v1 > 0 be such thatvs € [0,r] U [L1 — r,L1], Yh = (n,]) € Sy,
dist(a1(s), Ep) > v1 0r|da(s) - n| > v1. Let¢ [0, L1] — [0, 1] be a smooth function such
thatg (0) = ¢(L1) =0 andVs € [r, L1 — r] ¢(s) = 1.

We shall prove that for alle > 0 there existsw, € R?, |w;| < €, such that
Vh = (n,l) € Sy, for all s € [r, L1 — r] such thatai(s) € E;, + w,, d1(s) - n # 0. For
h=m,l)eSy,letTy={se[r,L1—r]|n-di1(s) =0} andV;, = {a1(s) —u|s € Tn,

u € Ep). Letyy,:[r, L1 —r] x E;, — R? be defined byy, (s, u) = a1(s) — u. Dy, (s, u) is
singular iffs € J,. Therefore), is the set of the critical values gf, and by Sard’s lemma,
measg);) = 0. Hence for alk > 0 there exists, € R? such thalw,| < ¢, w, ¢ V), for all
h € Syr. Our claim follows.

Now we can define : [0, L1] — C by a2(s) = a1(s) — ¢ (s)we . It is easy to check that,
provideds is small enoughy; is an embedding which satisfies conditi@). y is obtained
from a2 by a simple time reparametrization

If I'(a(s),-,-) possesses, for eash a nondegenerate local minimumo"‘(s), ¢8‘(‘Y)),
then, by the Implicit Function Theorem, along any curvesufficiently close toc,

I'(y(s),-,-) possesses local minirmég(s), (pg(”) such that

D% T(r().05 . ¢5®) > 11d, Vs e[0, L], (5.4)
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for some constant > 0 depending om. Therefore, by the above lemma, it is enough to
prove the existence of drifting orbits along admissible cugveBroperty (5.4) will be used
inLemma 6.1.

Given a Qy-admissible curvey, let us callsy,...,s; the elements ofZ(y), and
o] = y(s]),...,0f = y(sF) the corresponding frequencies. Sincén = 1,...,r,

(96”’”, <p(°)”’”) is a nondegenerate local minimumBfw},, -, -), there is a neighborhodd),
of wy, such thatyYw € Wy, I' (w, -) admits a nondegenerate local minimy#y, ¢g), the
mapw — (67, ¢g) being Lipschitz-continuous oW,,. Therefore we shall assume without

loss of generality that forath =1, ..., r,
2 / /
V(w, ) € (Wn Ny (10, L1))°[(65. 9§) — (66 ¢5 )| < Klo =o' (5.5)
Itis easy to prove that, if is an admissible curve, there exigts> 0 such that

(*) {s €[0, L]|dist(y(s), Om) < do} is the union of a finite number of disjoint intervals
[S1, 811, ..., [S-, S/, for all m =1,...,r each interval[S,, S,,] intersectsZ(y)
at a unique points, and y ([Sw, S;,1) C W,,. Moreover (s — dist(y (s), Qu)) is
decreasing ofiS,,, s, increasing ons, S,,1, and disty (s), Om) = (v/2)|s — 555 |
forall s € [Sy, S),].

Now we are able to define the “unperturbed transition chain”: for some small constant
o > 0 which will be specified later we choose= N andk + 1 “intermediate frequencies”:

Wy =: W0, W1, ..., Ok—1, Of ‘= OF
with @; := y (s;) for certain O=: s < s1 < -+ < sx_1 < 8¢ := L verifying
%gsﬂrl—sigpu, Vi=0,...,k—1. (5.6)
By (5.6) there results that

L 2L
— <k< —, (5.7)
Pl Pl
moreover it follows from (a) that
lwi+1 — @il <pp, Vi=0,....,k—1 (5.8)

This condition has been used before in Lemma 3.4. Giviime instant® := 95’1 < by <
..o <6 <--- <6, we define thd@; };—1. . x by the iteration formula:

¢1=<P6_ul, Pir1 =i + @i (0i+1— 0;). (5.9)

The choice of the instant®; };,—1 __x is specified in the next lemma: the main request

,,,,,
Wi

is that (6;, @;) must arrives-close mod 27411, to the local minimum pointd, ,(pg”')
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of the Poincaré—Melnikov primitivé™ (@, -, -), see (5.11)—(5.12). From (5.3) we derive
that if @; is 1/|Inu| far from the setQy of “nonergodizing frequencies” we can
reach this goal for “short” time intervalg 1 — 6; ~ |Inu|. In order to cross the set
O of “nonergodizing frequencies” we need to use longer time inter@als — 6; ~
1/dist(Qup, @) it \/i/IInp| < dist(Qu, @;) < 1/]Inu|. When thew; are “close” (Iess
than /i/|Inp|-distant) to the set of nonergodizing hyperplar@g we choose again
0; 11— 0; ~|Inu|. We also estimate in (5.13) the total tifie— 6, = Zk_l 011 —0;.

Lemma 5.2.¥§ > O there existgig > 0 such thatv0 < u < ug there exisl{é,-},ilwk with
61 =0y satisfying,

(i) if dist(w;, Om) > /t/|In ], then

2

max{ClllnuI " dist@;, Q)

} <6i41—6; < 2max{C1| Inw }, (5.10)

2
" dist(@;, Om)
whereM = 8rag1/9; . .
(ii) if dist(@;, Qm) < . /i/lInp| thenCa|Inu| < 6; 11— 60; < 2C1|Inp|, and such that
dist((6, @:), (057, wg') + 22297 <8, Vi=1,...,k, (5.11)

where @1, ..., @, are defined by(5.9). Equivalently,Vi = 1,...,k, there exist
h; € 29t and x; € R?*+1 such that

(61, 3:) = (657, ¢5") + 27hi + xi with | ;| < 8. (5.12)

Moreover there exists a constakity ) such that

9]6—91<K()/)u (5.13)
oK

Proof. Let ue > 0 be so small thay/ie/| In el < do and+/| In el = 32/C1/(v4/3p).
Let us define(6y, 1) := (90 ,(pol) Assume that(dy, ..., 0;) has been defined. If

dist(@;, Om) > /it/|In 1| then by (5.3) there certainly exisi® 1, @; 1) satisfying (5.9),
(5.10), such that

dist((0j+1. Bi+1). (95’”1, (pOE"“) + 2nZd+1) < 8/4.

We now consider the case in whieh is close to some “nonergodizing” hyperplanes
of Qu. If dist(w;—1, Om) > /i/lInu| and distw;, Qy) < /i/lInp| we proceed
as follows. We haven; = y (s;), with s; € [S,, S;] for somegq, 1 < g < r. Moreover,
by property (x) there existsp* € N such that{j € {1,...,k} | s; € [Sq,S’] and
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dist@;, Om) < /i/IInpl} ={i,...,i + p* — 1}, ands; < s < si4p=—1. We shall use
the abbreviations* for s;;, andw™ for a); We claim that

S S — (5.14)
4y CrpplInu]

1< pr<p:= |:
In fact, by (5.6) andx*)

vp . v .
ZHPT =D < E[(sier*fl — %)+ (s — 50)]

Vi

< dist(@; 4 pr—1, Om) + dist(@;, Qu) < 2| N
m

Hencep* < 8(vp. /il In ,LL|)__1, which implies (5.14), by the choice pfs.

Now we can define thé; 1, ..., 6;,«. The flow of (0*, 1), as any linear flow on a
torus, has the following property: there exigts(w*, §) > 0 (abbreviated a%*) such that
any time interval of lengti™* containg satisfying dist(rw*, 1), 2rZ4+1) < §/4.

Therefore (provided'y| In ug| > T*) we can defin®; 1, ..., 6;4,+ such that

Cillnp| <Ot jy1—0ivj < 2C1|Inpl,
diSt((é[+j,a[+j), (9_,',(,_0,‘) —|—27Tzd+1) < 6/4, (5.15)
whereg; ;= g; + o* (04 — 6;). For 1< j < p*, let
J

Pit+j =i+ Z Bitq—1(0i+qg — Oitqg—1)- (5.16)
g=1

We now check that for all = 1,..., p*, (6;+;, i+;), as defined in (5.15) and (5.16),
satisfy estimate (5.11), namely

distr (B4 Bi+4). (65 05"™)) = dist((Bi . @ij). (65 ') + 27247
<s. (5.17)

We have by (5.16) that

distr ((6i+. @i+j). (0i- i)
J
<distr (015, @ivj). (01 @i)) + Z(J)Hrqfl — ") (0i+g — Oitq—1)
g=1

p*
<8/4+2C1|Inp| Y |siyg-1—s*| (by (5.15)and (3)
g=1
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< 8/4+2C1| I | p* (s pr—1 — 5i)
<8/4+ 2C1|Inp|p®pp < 35/8,

by (5.6) and (5.14). Therefore, by (5.5),

: ~ Diyi  Ditj 36 . - & @
ity (Frs.8141), (95 057™) < G+ listy (). (68" 481)) + K1, —

<20k 8
<—+- <
g T2 Kpup

by (5.14), providedis has been chosen small enough.
There remains to prove (5.13). By) we can write

NV dist(y (s). )

=[U,, Vu,1U[V. U],
o (U, Vil U [ Vi, U]

Ap = {s € [Sm. S;,]

< e
2C1I|nul}

with Sy, < U < Viu <55 < V) < U, < S, (in the case whew* = w; r, A, is just an
interval). Moreover, by (@), — Viu, V,, — s, = /it/|Inpu|. Define A =, _; A We
havedy — 61 =00+ > ,,_1 om, Where

oQ .= Z (9_,'+1—9_,'), Oy = Z (9_,'_:,.1—9_,').

1<i<k—1,5;¢A 1<i<h—1,5,€Ap

Fors; ¢ A, 641 —6; <2C1|Inpu|, henceso < 2C1k|Inu| <4C1LINpw/(pp). Fori € Ay,
;41 — 0; < An(dist@;, Qp)) "L < 8m/(v]si — sy ) by (%), and hence, using that by (5.6)
Siy1 =8 +pu/2,

e 8_7'[ Z 1 < 167 Z Si+1 — 8§
"y Isi — s3] vop . Isi — s
1<i<k—1,5;€Ap 1<i<k—1,s;i€Ap

Estimating the above sum with an integral we easily get:
Vin Un
8r 16w / ds 8r 16 ds
S*

v(sk = V) v J sk—s vV, —sk) vo ) s = sk

m m

om <

(5.13) can be easily deduced by the boundpr- V,,, V, —s¥. O

In the next section we will prove the existence of a diffusion othit, g,,) close
to th_e junperturbed pseudo-diffus_ion orbitd (1), g (1)) : (61, 6k) —>_Rd+1 defined, for
1 €10, 6411, asp(t) := @i + @i (t — 0;) andqg,.6,,,1 = Qg,,,_g, (- — ) (Mod 2r).
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6. The diffusion orbit

We need the following property of the Melnikov functidi(w, - , -) defined w.r.t. to the
variables(b, c) by

f‘(a), b,c):= F(w,@é’ +0b,¢5 +ba)+c).

Lemma 6.1.Assume thal’(w, -, -) possesses a nondegenerate local minimu@fneg ).
Then there exist > 0, 5 > 0, v; > 0(j =1, 2) depending only o such thatvw = y (s),
s€[0, L]

(i) 3L (w,b,c)-c>v2>00r |31 (w,b,c)| >v1>0for |c|=r,|b| <b,
(i) oI (w, b, ) x sign(b) > v1 > 0for |c| <r andb = +b.

Proof. We can assume that (5.4) is satisfied. Sint@, -, -) possesses a nondegenerate
minimumin(6g’, ¢g), F(a) b, c) possesses i€0, 0) a nondegenerate minimum. Hence we
write F(a) b, c), up to a constant, aE(a) b,c) = Q2(b,c)+ Q3(b,c) whereQa(b, c) =
Buwb?/2 + (g - )b + (yoc - ¢)/2 is a positive definite quadratic forngf € R, a, € Rd,
Yo € Mat(d x d)) and Q3 = O(|b|® + |c|®). More precisely, by (5.4), there exists> 0
such thatB, > &, andd,(c) := Bo(Yuc - €) — (0w - €)% > €|c|? for all w € ¥ ([0, L]). In
addition, by the smoothness éf and the fact thatv = y (s) lives in a compact subset
of R?, there exists a constat such thatVe € y ([0, L), |to| + |Bol + Vol < M,
IVQ3(b, o) < M(b? + |c[?).

We haved, Q2(b, ¢) = Bub + ay - ¢ andd. Q2(b, ¢) - ¢ = bay, - ¢ + (Y - C).

Let us definevy := infwey([o,L]) e/(blayl) > 0 and vy ;= infwey([o,L]) e/(4By) > 0.
Then considew; := 17, v2 = P2r® andb := r SUR,¢, 0.2 (371 + |@w))/Bo, € (0, 11.
We now prove that, provided> 0 has been chosen sufficiently small, conditions (i) and
(ii) are satisfied with the above choice of the constants. Indedd f- c| + 2v1r) /B, <
Ib| < b and |c| < r then 1 (w, b, c) - sign(b) = Bulb|l — lay - ¢| — |8, 03(b, )| >
201r — O(r2) > v1 for r sufficiently small. In particular this proves (ii). On the other hand,
if 1b] < (lag - c| + 2v1r) /By and|c| =r, then

3T (@, b, ¢) - ¢ =Dy - €) + (Yoc - €) + 3:03(b, ¢) - ¢ = (Yo - ) — |b(aw - ©)| + O(r3)

S er? + (ap - )% — |ag-c|(|aw-c| + 201r) +o(?)
w

+ O(rs) > %rz — O(rs) > 21_)2r2 + O(rs).

—2v
S ¢ 2| 2
Bo
Hence (i) is satisfied for small enough. O
The partial derivatives ofl” are Lipschitz-continuous w.r.t(b,c¢) uniformly in

w € y([0, L]). Therefore, by Lemma 6.1, there exists 0 such thatyn € R with || < §,
V& € RY with |£] < 8, Yo € y ([0, L)),
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Bcl:(w,b+n,c+é)~c>3vz/4>0 or
|05 (@, b +1,c+&)| >3v1/4>0 for|c|=r, |b| <b, (6.1)
a,,F(a), b+n,c+&)xsignb) >3v1/4>0 for|c|<randb= +b. (6.2)

Moreover let us fixo > 0 such that
p <minfvy/2,v2/r}/(6C2), (6.3)

whereC2 appears in (3.24). These are the positive const@ngs) that we use in order to
define, for O< u < e, @;, 0;, @; by Lemma 5.2.

Sincey ([0, L]) is a compact subset @¥,, infsc[o0,.1 B(y (s)) > 0 and, by the choice of
6;, for 1 small enough (3.21) is satisfied. Therefore, by Lemma 3.5 and (5.12), there exists

u7 > 0 such thatyO < u < w7,

k—1 2 k

1 lciv1—cil N
Fulb.c)=5 = +u Y F@ini+bi.&+c)+ Ry, (64
u(b,c) 2;A9i+(bi+l_bi) Mi:1 (@i, ni i &i i) 7. (6.4)

where|n;| <8, |&] < 3, Ry is given by (3.23) and satisfies (3.24).
We minimize the functionaF), on the closure of

W={(b,c) 1= (br.c1..... b, cx) € RTV¥| by < b, || <r, Vi=1,... k}.

Since W is compact,F,, attains its minimum inW, say at (b,&). By Lemma 2.3
the existence of the diffusion orbit will be proved once we show thaf) € W, see
Lemma 6.3. Letus definefor=1,...,k—1

Ci+1—C Ci+l—Ci
Oiv1—06i  AG; + (biy1—bi)’

w; = w; (b, c) =
andwg = w; = 0. From (5.9) and (3.14)y; can be written as

. — o A—b
wi:M_@,._&:@,._wo( L ) (6.5)
(6i+1—6:) (0i+1—6:) [Nl

By the expression af, in (6.4) we have, forall =1, ...k,
0 Fiu(b, ©) = wi—1 — wi + pd: L @i, mi +bi, & + ) + Ri, (6.6)
O Fru(b, ) = %(|wi|2 — |wi-1?) + pdp I @, mi +bi & + ) + S, (6.7)
whereR; := 9., R7, S; := 0y, R7 satisfy, by (3.24) and (6.3)

wo v v
|Ri|a|Si|<§m|n{E,7}- (6.8)
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By (6.6)—(6.7), a way to see critical points 8], is to show that the terms;_; — w; and

|w; |2 — |w;_1]? are small w.r.t the Qu)-contribution provided by the Melnikov function.

By (3.8) |w; — @;| = O(1/(8;1+1 — 6;)) and hence, using (6.5), an estimate for eagh
separately is given bw; = O(1/10;11 — 6;]) + O(/|In u]). Hence eachw;| is O(u)-

small if the time to make a transitidf; .1 — ;| = O(1/u), as in [7]. These time intervals

are too large to obtain the approximation for the reduced action functiBpajiven in
Lemma 3.5 and (6.4). Therefore we need more refined estimates: the proof of Theorem 1.1
(and Theorem 1.3) relies on the following crucial property@er= w; (b, é), satisfied by

the minimum pointb, &).

Lemma 6.2.We havdfori=1,...,k)

i) |#— @1 =0Go, (i) |wi|=0( m“f_m) (6.9)

Proof. Estimate (6.9)(i) is a straightforward consequence of (6.6) and (6/8)|ik r,
since in this casé., F,.(b, ¢) = 0. We now prove that (6.9)(i) holds also|i;| = r for
somei. Indeed if|¢;| = r then
d¢; Fu(b,&) = a,é:, forsomea, <O, (6.10)
(since(b, &) is a minimum point) and then by (6.6), (6.10) and (6.8) we deduce:
Wi_1 — W; :05#5,' + O(w). (6.11)

Let us decc_)mpos@,»,l and w; in the “radial” and “tangent” directions to the ball
Si ={1bi| <b, |ci| <r}:

Wi_1=a;¢; +u;, Withu; c¢; =0, (6.12)
—w; =a;5,~ + u;, with I/l; -¢; =0. (6.13)
Since|¢;_1| < |¢i| =7, |¢iy1] < |¢i| = r, there results that
air?=wW;—1-&>0 and a[r®=—;-& >0, (6.14)
so thata;, a; > 0. Summing (6.12) and (6.13) and using (6.11) we obtain:
(ai +a})i + (ui +u;) = O(w) + . di,
with a;, a!, —a,, > 0. This implies thatr, = O(1/r) and from Eq. (6.11) we get (6.9)(i).
We can now prove (6.9)(ii). Leig € {1,...,k — 1} be such thatvl<i<k-—1,

[Wiol > |w;|. For j e {1,....k — 1}, j # io we can write W; = W, + s; With
5j = ij% (i1 — ;) and hence, by (6.9)(i)

i=
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j—1
Isj1 < Y |iWia — ;] < Culj — ol (6.15)

i=ig

for some constanf > 0. Hence

j—1 j-1
Gj—Gig= Y i (041 — i) = Wig(0; — Gip) + > _ 5i(fiv1— ) (6.16)
i=ip i=ip

and then by (6.15)

1€ = Cigl = [Wio||0) — Big| = Cralj — iol|8; — b
= (1@io| — Cpelj — iol)|6; — i - (6.17)

Since |0i11 — 6;] > Cillnu| + OD) (by (3.4)), Vi =1,....k — 1, 10; — 0| >

Ci1lj —iol - |Inu|. Take j € {1,...,k — 1} such that|j — io| = [(«/ﬁ«/|lnu|)‘1] +1
(such aj certainly exists since, by (5.7~ 1/u for u small). Then we obtain, using that
Ici|<rforalli=1,...,k,

- - - m In
2r>|c,/—cio|><|wio|—c Vit —CM)C1V| “
NG NG

i.e., |Wi,| < (2r 4+ CC1)/i/(C1/TInul) + C. We have thus proved the important
property (6.9)(ii). O

Remark 6.1.By (6.5), (w; — @;) = w; + O(/|In u]), so that, by (5.8), (6.9) implies

JE
VIl

Note that, from (3.8), we would just obtaj@; — @;| = O(1/|Inu|). (6.18) can be seen as
an a priori estimate satisfied by the minimum pdinte).

|w; — @;] =O< ) |@i+1 — @i| = O(1). (6.18)

The following lemma proves the existence of a local minimum of the reduced action
functional in the interior o and hence of a true diffusion orbit.

Lemma 6.3.Let (b, &) be a minimum point of, overW. Then(b, &) e W, namely
I¢il<r forallie{l,... k} (6.19)
and

|bj| <b forallie{d,... k}. (6.20)
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Proof. By (6.9) we have|i; 1] — |i; |?| < |1 — Wil - (|1Wir1] + Wi ]) = O(®?), and
hence, from (6.7) we derive:

Oy Fu (b, &) = ndp T (@i, mi + by, & + &) + O(u®?) + S (6.21)

Let us first assume by contradiction thtsuch thaié;| = r and|b;| < b. In this case we
claim that

¢ F(a),, ni + bi, & —i—c,) <wv/2 and |8b1"(a),, ni +bi, & —|—c,)| <v1/2 (6.22)
contradicting (6.1), sincy; |, |&| < 8. Let us prove (6.22). Sing@, ¢) is a minimum point

O, Fu (b, €) - & = (i1 — W7) - & + pde I (@i, mi + bi, & + &) - G + Ri - &

=0yCi - Ci = (xﬂrz <0.

By (6. 14) and (6.8) it follows tha&CF(w,, ni + b,,é, + ¢;) - ¢; < v2/2. Moreover since
|bij| < b we havedy, 7, (b,&) =0, and by (6.21), (6.8) it follows thdb, I (@;, n; + bi.
& +¢i)| <v1/2 (prowdedu is small enough). Estimate (6.22) is then proved. As a result,
if (6.20) holds, so does (6.19).

Letus finally prove (6.20). If by contradicticti with |b;| = b, by (6.21), (6.8) and since
(b, ) is a minimum point, arguing as before, we deduce that(w;, ni + bi, & + &) x
sign(b;) < v1/2. This contradicts (6.2) sinde;|, |&| <5. O

Proof of Theorem 1.1. Lemmas 6.3 and 2.3 imply the existence of a diffusion orbit
Z,u,(t) = (QOM(I), qu(t), I/,L(t)v p,u.(t))

with ¢,,(61) = @; +O(1) andg,, (6x) = w; +O(w) (z,.(-) connects a Qu)-neighborhood
of 7,,, to a Q(u)-neighborhood of,,. in the time-intervalty, t2) wherery := (41 +62) /2,
9= (Op_1 + ék)/Z). The estimate on the diffusion time is a straightforward consequence
of (5.13) and the fact thaél,k =01 + O(1). That dist,.(r), y ([0, L])) < n for all 7,
providedu is small enough, results from (6.18) and the estimates of Lemma 2.1.

Finally we observe that, if the perturbatioryig f +  f), then Lemma 2.1 still applies
with the same estimates. Moreover in the development of the reduced functional the
term containingu?f gives, in time interval®;.1 — 6; < const.| Inwl//ix, negligible
contributions ¢u). Therefore the same variational proof appliesl

Proof of Theorem 1.3. If the perturbation is of the fornf (¢, g, 1) = (1 — cosq) f (¢, t),

by Remark 2.1(2), we can prove that the development (3.22) holds along any pathe

action space (without any condition as (3.21)). Therefore the previous variational argument
applies. O

Forﬁ > 0 small Iel’D’S be the set of frequencieg“nonresonant with the perturbation”
={weR?||w-n+1>pB, YO<|@n, )| <N} If B becomes small withe our
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estimate on the diffusion time required to approach to the boundar'(éStdt)f] slightly
deteriorates. In the same hypotheses as in Theorem 1.1 we have the following result.

Theorem 6.1.VR > 0, VO < a < 1/4, there existsug > 0 such thatv0 < u < us,
Yor,wr €CN D% N Br(0) there exist a diffusion orbity,, (1), g, (t), 1.(t), p. (1)) of
(Sy) and two instantsy < 2 with 7,,(t1) = @y + O(w), I,,(t2) = wr + O(n) and

T2 — 71| = O(1/p ). (6.23)

Proof. For simplicity we consider the case in whighiw;) = O(u?) andB(wr) = O(1).

With respect to Theorem 1.1 we only need to prove the existence of a diffusion orbit
connectingw; to some fixedw* lying in the same connected componenrlzy\f; N Br(0)
containing w;. In order to construct an orbit connectingy to »* we can define

w; ‘= w + i(0* —wp)/k, for 0<i <k andk := [|o* — orl/ppu] + 1. We obtain that

Bj = ﬁ(wj) > C(u? + jou) for someC > 0 and we choos@Hl - 9j > constﬁ
verifying in this way the hypotheses of Lemma 3.5.df belongs to someDy, the
transition times In |/ /it needed to cros® y (see Lemma 5.2) still satisfy (3.21). We

finally obtain a diffusion time%, — 61 = Z'};i(éﬂrl —0,)=01/ut). O

7. The stability result and the optimal time

In this section we will prove, via classical perturbation theory, stability results for
the action variables, implying, in particular, Theorem 1.2. We shall use the following
notations forl e N, A c C! andr > 0, we defineA, := {z € C! | dist(z, A) < r} and

={zeCl'||Imz;| <5, V1< j <!} (thought of as a complex nelghborhood'ldt)
leen two bounded open sefsC 02 D c Cland f(I, ¢, p,q), real analytic function
with holomorphic extension 0B, x T!,  x B, for someo > 0, we define the following
norm

”.f”B,D,S = Z Sup |fk(1’p’q)|e|k|3’

1 (p,q)EB
keZ IeD

where fi(I, p,q) denotes the k-Fourier coefficient of the periodic function
o—> fU,e,p,q).

Let us consider Hamiltoniart{,, defined in (1.1) and assume tha(l, ¢, p,q,1),
defined in (1.2), is a real analytic function, possessing, for samg’, s > 0, complex
analytic extension off € R? | |1| <7}, x Tf x{peR||p| <7} x Ty xTy.

It is convenient to write Hamiltoniafi{,, in autonomous form. For this purpose let
us introduce the new action-angle variablég, o) with r = ¢g, that will still be de-
noted byl := (Io, I, ..., I,) andg := (o, ¢1, . . ., ¢,). Definingh(I) := Io + |1|?/2 and
E = E(p,q) := p?/2+ (cosq — 1), H,. is then equivalent to the autonomous Hamil-
tonian,

H:=H,¢,p,q):=h()+E(p,q)+nf,¢,p,q). (7.1)
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Clearly, HamiltonianH is a real analytic function, with complex analytic extension on
{TeR™ I <F), xTd* x {peR | |pI <7}, x T

In the sequel we will denote ky(t) := (1 (), (1), p(t), q(¢)) the solution of the Hamilton
equations associated to Hamiltonian (7.1) with initial condit¢® = (7 (0), ¢(0), p(0),

q(0)).
The proof of the stability of the action variables is divided in two steps:

(i) (Stability far from the separatrices of the pendulliprove stability in the region:

Er=&VeEr ={U.0,p.9) | E(p.q) > n}
U{I.g.p.q) | =24 n“ < E(p,q) < —pu}
in which we can apply the Nekhoroshev Theorem obtaining actually stability for
exponentially long times,

(ii) (Stability close to the separatrices of the pendulum and to the elliptic equilibrium
point) prove stability in the region:

E2:=63UE ={(,0,p.q) | —2u <E(p,q) < 2u}
U{(l,e,p,q) | —2< E(p.q) < —2+ 2u}
in which we use somad hocarguments,
where 0< ¢4 < 1 is a positive constant that will be chosen later on, see (7.12).
We first prove (i). In the regiofs&y := 1, ,&F we first write the pendulum

HamiltonianE (p, ¢) in action-angle variables. In the reg?oﬁfr U{p > 0} the new action
variableP is defined by the formula

P:=PY(E):= %2 f VE + (14 cosy) dy,
0

while in the region?{ the new action variable is

Yo(E)

P:=P (E)= Z—ﬁ / Vv E + (14 cosy) dy,

T

6 IT, 4 denotes the projection onto tlig, ¢) variables.
7 The case wittp < 0 is completely analogous.
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whereyg(E) is the first positive number such that+ (1 + cosyg(E)) = 0. We will use
the following lemma, proved in [10], regarding the analyticity radii of these action-angle
variables close to the separatrices of the pendulum.

Lemma 7.1.There exist interval®* c R, symplectic transformationg®™ = ¢* (P, Q)
real analytic onD* x T with holomorphic extension m),ﬂ; x Ty, and functionsE™* real

analytic onD* with holomorphic extension o such thaip®(D* x T) = & and

E(¢=(P, Q)) = EX(P),

with rg = constu® and so = const/|Inu|. Moreover, for E bounded, the following
estimates on the derivatives héld

=+
OL,ilr,u“i(E» ~ |n—1(1+ %) (7.2)
e 1 g 1
= gpz PEEN~ <1+ ﬁ) (7.3)

After this change of variables Hamiltonidh becomes
H*:=H*(I,¢, P, Q):=h*™(I, P) + uf*.¢. P, Q)
i=h(l) + EX(P) + uf=(1, ¢, P, Q).
wheref*(1,¢, P, Q) := f(I,¢,¢* (P, Q)).

7.1. Stability in the regiog;"

In the regionEf, the proof of the stability of the actions variables follows by a
straightforward application of the Nekhoroshev Theorem as proved in Theorem 1 of
[19]. In order to apply such theorem we need some definitions/ Fer= 0, a function
h:= h(J) is said to bé, m-quasi-convern A c R4+, if at every point/ € A at least one
of the inequalities

(W', €) > 111, ()5, &)= mlE
holds for eactt e R*+1. Using the previous lemma it is possible to prove that, for every
7 > 0, the Hamiltoniarh ™ is [, m-quasi-convein the setS := D} x {I e R | [I| <7}y,

with [, m = O(1). In the previous set also holds

[ =M =0(u=In"31/w), ||| =:20=0(1).

8 If f(x),g(x) are positive function, with the symbgl ~ ¢ we mean thag ¢1,c¢2 > 0 such thatr1g(x) <
f(x) <cog(x), Vx.
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Putting

 (1—2cq(d +3))
T 2d+2

m 2(d+2)
coim 210r5m< ) — O+ |0+ (1)),

e =l fTls,s5 = O,

11M
we obtain that, if the initial daté/ (0), ¢(0), p(0), ¢(0)) € Sf, thatisP(0) e DT, then

|1(t) — 1(0)| < constp® In=3(1/), for
|t| < constexp(constu~* In?(1/w)). (7.4)

If cs <1/2(d + 3) thena > 0 and we obtain stability for exponentially long times.
7.2. Stability in the regiod;”

In the region&;” we cannot use the Nekhoroshev Theorem as proved in [19], because
E~ is concave and sb™ is not quasi-convex. However we can still apply the Nekhoroshev
Theorem in its original and more general form as proved in [17] (see also [18]); in fact the
functionh™ proves to besteep(see Definition 1.7.C, p. 6 of [17]).

For simplicity we prove thesteepnessf the functionz™ in the cased = 1 only. In
this caseh™ =h~(lp, I1, P) = Ip + 112/2 + E~(P). We need more informations on the
function E~. In the following, in order to simplify the notation, we will forget the apex
writing, for exampleE = E~ andP = P~

By (1.11) of [17], sinceVh~ # 0, a sufficient condition fokh~ to be steep is that the
system

m+In+E(Pn3:=0, n5+E"(P)n35:=0, E"(P)yj3:=0, (7.5)

has no real solution apart from the trivial opg=n2 =73 =0.
Making the change of variabl¢ = arccogl — E + £E), whereE = E + 2, we geP

1 1

P(E)=/F1(s;E)ds, P(E>=3*1/2/ Fa(§; E) dg,

0

0
1

B(E) = f Fae: E) de, (7.6)
0

where

9 We will denote with “ " the derivative with respect t&, and with *’ ” the derivative with respect t®.
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V2 V6Jy/I—E

F1(&; F) = , & F) = as ,
Rty T - B
o 3/21-)%2
F3(&; E) := e B (7.7)
From the equatiot (P (E)) = E, deriving with respect t&, we obtain that
E"(P(E)) =—(P(E)) °[P(E)P(E) — 3(P(E))7].
We want to prove that
E"(P(E)) <0, (7.8)

for every E with —2 < E < 0. This is equivalent to prove that(E) P(E) > 3(P(E))2.
Using (7.7) we see thall1 F3 = Ff and hence, noting thatsz(&; E) is not proportional
to F1(§; E) for everyE fixed, we conclude thaf F1 [ F3 > ([ F>)? by a straightforward
application of Cauchy—Schwartz inequality and (7.8) follows from (7.6).

By (7.8) the unique solution of the system (7.5) is the trivial gae= 2 = n3 =0,
hence the functioh ™ is steep. Itis simple to prove that the so-calégkepness coefficients
andsteepness indicdsee again Definition 1.7.C, p. 6 of [17]) can be taken uniformly for
-2+ u < E < —pf: thatis they do not depend en

Now we are ready to apply the Nekhoroshev Theorem in the formulation given in
Theorem 4.4 of [17]. In order to use the notations of [17] we need the following
substitutionst?

(aZ,pP)y—1, (p, Q) —¢, H —H, h — Hy, uf — Hi, ro— p,

{TeR™HIN<F)x D™ > G, {1eR™MI1<F}, xTot x D x Ty > F.
Definingm := supy ||d°Ho/d 17| and remembering (7.3) and the definitiongfwe have:
m < constu In*3(1/u), p = constu. (7.9)
In order to apply the theorem we have only to verify the following condition,

M :=sup|H1| < My, (7.10)
F

where My depends only on the steepness coefficients and steepness indices (which are
independent oft) and onm andp (which depend o). Moreover we use the fact that
the dependence affo onm andp is, “polynomial” (although it is quite cumbersome): that

10 we observe that we do not need to introduce(thgy) variables so in our casé = +oo.
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is there exist constamy;, ¢; > 0 such thatMo(m, p) > constm = p% (see Section 6.8 of
[18]). So condition (7.10) becomes, using (7.9),

1t < consty©dCated) n3 (1/y,),

which is verified choosingy < (éq + ¢4) 1.
Now we can apply the Nekhoroshev Theorem as formulated in Theorem 4.4 of [17],
obtaining that if(7 (0), ¢(0), p(0), ¢(0)) € £&; then

[1(t) — 1(0)] <d/2:= MP/2=0(uP)

1 1\¢ 1 1\“
V]| <T:=—expl — ) =0 —exp| — , (7.11)
M M u Jz

wherea, b > 0 are some constants depending only on the steepness properfiis of
Finally, choosing

ca <min{(2d +6)71, @5 +ca) "t} (7.12)
we have proved the exponential stability in the regian
7.3. Stability in the regio;

In the following we will denotel* := (I1,...,1;) the projection on the last/
coordinates. We shall prove the following lemma:

Lemma 7.2.¥k > 0, Jko, ug > 0 such thatv0 < u < us, if (1(t), ¢(t), p(t),q(1)) € ES
forO<r¢ < T,then

. 1 _
") - I*(0)| <& v < mm{@ln—, T}.

K
2 7!
It is quite obvious that for initial condition& (0), ¢(0), p(0), ¢(0)) € &5, Theorem 1.2
follows from Lemma 7.2 and the exponential stability in the regign

In order to prove Lemma 7.2 let us define, for some fixed < 7 /4, the following
two regions in the phase spadé::= {(I, ¢, p,q) | lg| < é mod 2z, |E(p,q)| < 2u‘}
andV :={(I, ¢, p,q) | lg| > 8 mod 2r, |E(p, q)| < 2uc}. We first note thaf

z(t) eV V¥ <t <ty |q(t1)

I(t2) — 1(11)| < calta — t) . (7.13)

I

q(t2)| = 8 mod 2r

= I2—11 <cy,

11 1n the following we will usec; to denote some positive constant independent.on
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Indeed in this cas¥r; <t < 12, ¢3 <lg@)] < ca. This implies that, — 11 < ¢1 and then,
integrating the equation of motioh= —pu.9, f in (11, t2), we immediately get (7.13). We
also claim that

’

Vi <t <t, z(t) € U and|q(t1)

q(t)|=8mod 2r =t — 11 > cs|Inp|.  (7.14)

We denote Withf] (respectively{,) theith time for which the orbit enters in (respectively
goes out from)U, so thatrl, < ri, < 15 <+t for 0 <i < io. From (7.14) it follows
thatip < cexo/p and, from (7.13), that the tim&, spent by the orbit in the regiovi is
bounded by7xo/ 4.

In order to prove (7.14) we use the following normal form result for the pendulum
HamiltonianE (p, ¢) in a neighborhood of its hyperbolic equilibrium point (see, e.g., [12]).

Lemma 7.3.There exisi®, 5§ > 0, an analytic functiorg, with ¢’(0) = —1 and an analytic
canonical transformation

@:B— {Ip| <38} x {lgl <smod2r} whereB:={|P|,|Q| <R},
such thatE (@ (P, Q)) = g(P Q).

In the coordinategQ, P) the local stable and unstable manifolds are respectively
Wi = {P =0} andWg. = {Q = 0} and Hamiltonian (7.1) writes as

H:=H(,¢,P,Q):=h(I)+g(PQ)+nf, ¢, P, Q)

wheref(l,¢, P, Q) := f(I,¢, (P, Q)).

We are now able to prove (7.14). Certainly there exists an ins{ast[t1, r2) for
which (p(t7),q(t})) € ®(B) but, Vi1 <t < 1], (p(t),q(t)) ¢ ¢ (B). It follows that,
if we take the representagt(r1) € [4, 8], then p(¢7)q (7)) < 0. We will denote with
Z(t) := (I(t), p(1), P(t), Q1)) = (1(1), 9(1), @ L(p(1), q(1))) the corresponding solu-
tion of the Hamiltonian system associated b From the fact thatig(t7)| = & or
(p(t]),q(t])) € 0@ (B) and thalg(P Q)| < u, p(t)q(t]) < 0, it follows that| P (z])| <
cgp’d and|Q (1) > co.

In the same way there exists an instagt with 11 < 1§ < 5 < 2 for which
(P(t3), Q(t3)) € B but,Vt > 15 (P(t), Q(¢)) ¢ B; in particular it resulty P(¢5)| > c1o.
We claim thatz; — 7 > c11In(1/u). Indeed P(t) satisfies the Hamilton’s equation
P(t) = —g'(POQ@)P(1) — /Lan(I(t),(p(t),P(t),Q(t)) with initial condition
|P(t7)| < cgu. Since |P(t3)| = c10, we can derive from Gronwall’s lemma that
t5 —t; > c11In(1/pw), which implies (7.14).

By the following normal-form lemma there exists a close to the identity symplectic
change of coordinates removing the nonresonant aggieshe perturbation up to @2).
It can be proved by standard perturbation theory (see for similar lemmas Section 5 of [12]).

Lemma7.4.Let B > 0. There exisi, p > 0 so small that, defining := ming < g2 |g' (€)1,
S :=max; < gz |g"(§)], theni > 2SR? and p < min{A/4N, R?/8s, B/2N,r}. Let A be
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a sublattice oZ?*1. Let D c R?*! be bounded ang-nonresonant modt, i.e.,VI € D,
heZd*I\ A, |h| < N itresults|(1, I*) - h| > B. Suppose that

e=u fHB’D’S <2718, ps, (7.15)

wherd? D := D,, B« :==min{B, 1/2}. Then there exists an analytic canonical transforma-
tion:

lI/:ExT‘f;‘lxl_?e D x T4l x B,
- (7.16)
(l,9, P, Q) (1,9, P, Q),

with B :={|P|,|0| < R/8}, D :=D,,a, such that

=H(I,,P,0):=How=h(I)+3(I,5,P0)+ f(1,3, P, Q)

=

with 3(1,8,8) = g@&) + [*1.2,8), f*1,3.8) = Y pen m<n 1. 6" and
||f*||§’5’s/4 < . Moreover the following estimates hold

292

— 25¢ - &
0-0|< TR 1 l5.5.a< 5 (71D

4
T-1]<2%  P-p
Bss

s

Let £ be the (finite) set of the maximal sublatticas= (h1, ..., hy) C Z4+1 for some
independenty; € R4+ with |h;| < N fori=1,...,s <d. For A € £ we define the
A-resonant frequencieR? := {I* e R? | (1,1*) - h =0, Vh € A} and the set of the
s-order resonant frequenci€s$ := | Jgima—, R

Settingh; = (I;, n;) with ; € R, n; € RY, we remark that ifR4 + ¢ thenny, ..., n, are
independent. We also define thie— s)-dimensional linear subspace (associated with the
affine subspac®4) L4 := (N!_, n;- ¢ R? and we denote bjT4 the orthogonal projection
fromR? onto L.

SinceL is a finite set :=mMin e MiN,cza <N, 7420 |74 n| is strictly positive.

We now perform a suitable version of the standard “covering lemma” in which the
whole frequency space is covered by nonresonant zones. The fundamental blocks used
to construct this covering will be-neighborhoods of ang“, i.e., R := {I* e RY |
dist(/*, R4) < r} for suitabler > 0 depending on dim. Let r; > 0 be such that
(d + Dry < c12x, for somecyp sufficiently small to be determined. For<ls <d — 1
we can define recursively numberts sufficiently small such that & ry; < arg11/2N,
verifying!3

d

dimA=dima’=s, R*#RY = R, NRY,, c | Z,. (718
i=s+1

12 B andD are thought as complex domains, as in the se@uahd D.
13 Assumption (7.18) means that, in order to go from a neighborhoodd#a)-order resonance to a different
one, we have to pass through an higher-order dimensional one.
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We also define, for K s <d — 1,

d d
0. d ] S . X i
§7:=R \(Uzéri) and §°:= Zfs+1)rs\< U Zis+2>rl-)’
i=1

i=s+1

i.e., thes-order resonances minus the higher-order ones. We clainRthat S°U - - - U

s=tuzf, 4, isthe covering that we need. We also define

d d
0 0. j ] 5 . y i
$Oc s0:= Rd\<U Z;i) and §°C S i= ng+1),s\( U Z’(Hl),’_).
i=1

i=s+1

If the orbit lies near a certaiR (but far away from higher-order resonances) then the
following lemma says that the drift of the actiof’ in the direction which is parallel to
R4 is small.

Lemma 7.5.Suppose thaf*(0) € S*, I*(r) € S and [I*(1)| <7 +r/2, VOt < T*
for someT* < kol Inw|/nw and0 < s <d — 1. Then, ifs > 1, there exists a sublattice
A c 7241 dimA = s such that/*(r) € RA \ (UL, 12 ), YOSt < T

(s+Dyrg (s+Dr;
Moreover ifkg is sufficiently smaltt
T4 (1* (1) — 1*(0))| <r1/2 YO<t<T* (7.19)

and hence, fos > 1, |I*(t) — I*(0)| < 2(s + 1)ry + r1/2. In particular for 1*(0) € S° we
have that I*(r) — I*(0)| <r1/2, VO<t < T*.

Proof. In the cases = 0 we take A = {0}. The existence ofA is trivial because
I*(0) € $* and hencel*(0) R(13+1)rx for some A € £ with dimA = s. The fact that

I*(t) R(/;+1)rx \ (U?=s+1 Zle)ri), VO <t < T follows fromI*(r) € S5, VO<r < T*
and (7.18). Now we want to apply Lemma 7.4 wigh:= ar1/2 andD := R(‘A‘,H)rs \

(Uf.l:SJrl Zés—',—l)r,-)' We hav_e to verify thaD is p-nonresonant modi. Fix |ho| < N,
ho = (lo,no) ¢ A (respectively# 0 for s = 0). We first estimatelo + no - 15| for all
I¥ € Do := R\ (U?=s+1 Zfs+1)r,-)- If A’:= A (ho) andn} := IT4no we have two cases:
ny # 0 orng = 0. If nj # 0 we can perform the following decompositiol§; = 17 + v

with I3 € RY', v e LA and moreovel v = +|v|n}/Inl. Sincel§ ¢ (Ui, 11 Zi 4,
then I ¢ Z£+1)rs+1 and, hencév| > (s + Dry4+1. Using the previous estimate, the fact

thatl] € A" and|nj| > o, we conclude that

14 |n the case = 0 I74 is simply the identity orR?.
15 We observe that diet3. Ry = vl
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o=+ no 18] = [0+ 0 1£) + n- o] = o vl = i o] = ol |
> als + Drgqa. (7.20)

Now we consider the case in whielf = 0. In this case it is simple to see thag =
(I',0) +h whereh € Aandl’ € Z\ {0}. So|lo+no- I§| = |I'| = 1. Now we can prove that
llo+no-1*| > g forall I* € D. In fact I* = I§ + u with I§ € Do and |u| < (s + Dr;.
Using (7.20) and; < arg1+1/2N, we have

llo+no-I*| > |lo+no- I§| — [no- ul > a(s + Drep1 — N(s + Dry
>

a(s + Drep1/22 B,

proving thatD is 8-nonresonant modi . Finally we can verify (7.15) ifug is sufficiently
small. Now we are ready to apply Lemma 7.4 in order to prove (7.19). Using (7.13), the fact
that f* contains only theA-resonant Fourier coefficients, (7.17) and Hamilton’s equation
for H we have:

\TA(1* (1) — 1%(0))| < c2Tv e + caape® (ol In el /12) + craiop

< c2c7K0 + caspkol In ] + c1acexo < r1/2
if ko andug are sufficiently small. O

Proof of Lemma 7.2. Suppose first that/*(#)| < 7 +r/2 VO <t < kol Inpu|/w. If
1*(0) € Zfdﬂ)r and I*(1) Zfdﬂ)rd V0 < t < kollnp|/p then |I*(t) — I*(0)] <
2(d+1)ry and the lemma s proveddfiz < 1/4. Otherwise we can suppose thia0) € S*
forsome O< s <d — 1. If I*(r) € S5 VO <t <ol Inp|/u then we can apply Lemma 7.5
proving the lemma for12 small enough. Suppose tha0 < T* < k| In x|/ such that
I*(t) e SSVO<t < T* butI*(T*) ¢ S5. We will prove that

(T esfu...us? (7.21)

that means that the orbit can only enter in zones that are “less” resonant. In fact by
Lemma 7.5 we see that*(T*) ¢ Ud lZl(s—i-l)r,-' moreover, since*(T*) ¢ S;, we

i=s+
have that/*(T*) ¢ Z‘(‘Hlm and hencd*(T*) ¢ U?:s Zfs+1)r,-- If 1*(T*) € SO we have
finished. If 1*(T*) ¢ S then I*(T*) € Uj_1 2, € UiZ1 Zi; g, If I°(T*) € S* we

have finished. IfI*(T*) ¢ S then I*(T*) ¢ Z%rl \ UL, Z4,. and hencel*(T*) e
U‘.‘;Zl Zéiﬂ)”. Iterating this procedure we prove (7.21).

1
The conclusion is that if the order of resonance changes along the orbit, it can decrease
only so that the orbit may eventually arrive in the completely nonresonant$bwhere

there is stability. Considering the “worst” case, i.e., WH&(0) Zfld+1)rd and the orbit

arrives in S9, summing all the contributions from Lemma 7.5, we have that; if is
sufficiently small,
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d-1
1%(t) = I*(0)| < 2(d + Dra + Y _(2(s + s +r1/2) +r1/2
s=1

d
=Y 2(s + Drs +dr1/2< x/2. (7.22)
s=1

In order to conclude the proof of the lemma we have only to prove that(0)| < 7 then
[I*(1)| <F+r/2V0<t < kollnw|/w. This is an immediate consequence of (7.22) and of
the factthate <r. O

7.4. Stability in the regiod,

If, for all + > 0 (p(1),q(t)) € &, then it follows easily thatp(r)l, |q(t) — | =
O(u4/?). Then, definingfi(1, ) := f (1. ¢,0,7m) and fo(1, ¢, 1) := u=“4/?[ (I, ¢, p(1),
q()— fal, p)], itresults thatd; f2(1, ¢; 1)|, |0, f2(1, ¢; t)| < const Clearly if (1 (2), ¢(2),
q (1), p(t)) is a solution of (7.1) thekl (), ¢(¢)) is solution of Hamiltonian

Hy:= Hi(I, @; 1) := h(I) + pfid, ) + 2 fo(1, g3 1).
Now!® one can construct, in the standard way, an analytic §ymplectic<ma([3, Q) —>
(1, ¢) with_|I_ — 1| = O(u/B), gnd two analytic function#, f such that[x + wfilo
®(1,9) =h(D+ f(I,p) with || f|| = O(1?). Defining f3:= f3(I, ;1) := fo(®(1,); 1)

we also get thatd; f3(1, @; )|, |05 f3(I, @; t)| < const/B. The solutions of the Hamil-
tonian H, are symplectically conjugated, via—1, to the solutions of the Hamiltonian

Hy:=Hy(1,5:1) :=h(I) + f(I,8) + u*T/? f5(1,3; 1)
for which we obtain, directly from Hamilton’s equations, the estimates:
|1(r) — T(0)| < constu</4, V|t| < consty ~t¢a/4,
It follows that, if (/(0), ¢(0), p(0),¢(0)) € &, then

1) — 1) < |[1@) = T@)| + |[T() = T©)| + |10 — 1 (0]
<constu®/4 V|| < consty 1 ¢/4

(if at some instant the solutionz (1) escapes outsidg; it is exponentially stable in time).
Finally, from the previous steps, we can conclude that there exists 0 such that
0 < u < u1 Theorem 1.2 holds.

18 For brevity we prove only the case in whiglf0) is in a nonresonant zone. The resonant case can be treated
asin&S.
2
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Appendix A

Proof of Lemma 2.1. We shall use the following lemma:
Lemma A.1. There existdp > 0 such thatyT > Ty, for all continuous
fi[-1,T+1]—R,
there exists a unique solutignof
—h+4cosQr(t)h = f, h(0)=h(T)=0. (A.1)
The Green operataf : CO([—1, T+1]) — C%([—1, T +1]) defined byg( f) := h, satisfies

max |h@®)|+ a0 <C max |f)] (A.2)
te[—1,T+1] te[—1,T+1]

for some positive constaat independent of.

Proof. We first note that the homogeneous problem (A.1) (ife= 0) admits only the
trivial solution 2 = 0. This immediately implies the uniqueness of the solution of (A.1).
The existence result follows by the standard theory of linear second-order differential
equations. We now prove that any solutibnof (A.1) satisfies (A.2). It is enough to
show that may—1,7+1) |h(#)| < C'maxe—1.7+11|f(#)]. Indeed we obtain by (A.1)
that maXej—1,7+17 1R ()| + lh(t)| < (2C" + D maxe—1,7+11 1 f ()| and, by elementary
analysis, this implies (A.2) for an appropriate constant

Arguing by contradiction, we assume that there exist sequefites> oo, (fr), (hy)
such that

—hy +€0SQ71, 1)y = fu,  hn(0) = hy(T,) =0,

huln:=  max |k, (1)| =1, — 0.
aln = max [ (0)] | fuln

By the Ascoli-Arzela Theorem there exiskse C2%([-1, 00), R) such that, up to a
subsequencé,, — h in the topology ofC? uniform convergenceip-1, M forall M > 0.
SinceQ7, — go — 27 uniformly in all bounded intervals df-1, co), we obtain that

—h +cosgo(t)h =0, h(0)=0, sup |a(n)| < 1. (A.3)
1,00)

re[-1,

Now the solutions of the linear differential equation in (A.3) have the farm K1& +

Koy, where (K1, K2) € R2, £(1) = go(r) = 2/costy and (1) = %(sinht + t/coshr)

satisfiesyré — £y = 1. The bound ork implies thatk, = 0 and/(0) = 0 implies that
K1 = 0. Henceh = 0. In the same way we can prove thgt(- — 7,,) — 0 uniformly in

every bounded subinterval ¢f oo, 1].
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Now let us fixz such that for alk large enough, for all € [7, T, — 7], cosQr, (t) > 1/2
(r does exist because @2.4)). By the previous step, for large enough, there exists
a maximum point, € (7, T, — 7) of h2(t), i.e., h2(t,) = |h,|2 = 1. Then (h2)(1,) =
2h (tp)hn (tn) = 0 @and(h2) (t,) = i, (tz)hn (1z) + 2h2(2) < 0. By the differential equation
satisfied byh,, we can derive from the latter inequality that ¢@s, (tn)hﬁ(tn) <
Snt)hn(ty), 1., cOQT, (1) < fu(ty), which, forn large enough, contradicts the property
of r and the fact thatf, |, — 0. O

Now we can deal with the existence result of Lemma 2.1.Tet (0~ —01), w =
(0~ —M/T, () :==w( —6T) +¢™. In the following we callc; constants depending
only on f. We are searching for solutiotig, ¢) of (2.1) withg (%) = ¢, g(6F) = ¥,
in the following form:

{(/)(t) =w(t—0N) +eT+v(@—06"),
qg)=0r@t—6")+wi—0").

Hence we need to find a solution, in the time interak [—1, T + 1], of the following
two equations:

i(t) = —/L[F(p(v,w)](t), v(0) =v(T)=0,
[L(w)](t) = [G(v, w)](t) = —[S(w)](t) + M[Fq(v, w)](t), w(0) =w(T) =0,
(A.4)
where

[Fo (. wid, W] (1) := 8, f (0t + T +v(0), Q1 (1) + w(r), 1 +67),
[Fgw, wid, )](0) := 8 f (0t + 9" +0(0), 07 (1) +w(t), 1 +67),
[Sw)] (@) :=sin(Qr (1) + w (1)) — sin(Qr (1)) — cog Q1 (1)) w(2),
[L(w)]@) :=—(t) + cosQr (Hw(t).
We want to solve (A.4) as a fixed point problem. By Lemma A.1, the second equation of

(A.4) can be writterw = K := G(—S + uF,). Moreover the first equation (A.4) can be
written

JOWT —t)+ J(T)t

v() =J (1) = [J (v, w; A, w)](@) :=J (1) — T , (A.5)

where, setting?, (s) = F, (v(s), w(s)),

t X
[7(v,w;)»,,u)](t) = —/L/ / Fy(s)dsdx.

T/2T/2
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Let us consider the Banach space= V x W :=C1(I; R?) x C1(I; R), endowed with
the norm|z|| = [|(v, w)|| := maxX{||vllv, |lwllw}, defined by:

ol = su[o)| (L4 eunT?) 6% + o0 6],
te

lwlw := sul;{|w(t)| + @] (A.6)
te

A fixed point of the operatod :Z — Z definedVz € Z as & (z) := & (z; A, 1) =
(J(2), K(2)) is a solution of (A.4). We shall prove in the sequel thais a contraction in
the ball’ D := Bz,.(z) for an appropriate choice @f c1, Co, providedu is small enough.

We havel[S(w)](1)] < w2(r), so thatvz, |[G (v, w)](t)| < c2u? + capn. Now, choosing
first ¢ sufficiently large and thep sufficiently small, we can conclude using (A.2) that,
if ze D, |K(2)|lw < /4. Now we study the behavior of. Let us first consider. We
define:

fu@® = fu(Qr® +w®),  gu®) = fi,(Qr®) +w(®)),
o i=n-t +10T, Buii=n-w+1.

Fort e [-1,T + 1], z € D, we want to estimate:

t 1

7(t)=—M/F¢:—M > ine‘“nl/fn,(s)e‘"'“(”e‘ﬁn”ds.

T/2 [(n,DISN T/2

Integrating by parts, we obtain:

t
i [ St @ ds

T/2
= fu(T/2) &> T2 Pul/2 _ £, (1) nv® hut (A7)
t
+ f gni () O (5)e"V) dbuis d (A.8)
T/2
t
+ /(gnl(S)w(s)—i-fn[(s)in-i)(s))ei"’”(s)eiﬂ”” ds. (A.9)
T/2

By (2.4), the term (A.8) is bounded kg maxe X2, e K2(T-1} Hence, for; € D,

17 1t X is a Banach space amd> 0 we defineB, (X) = {x € X | x| <r}.
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t

f Fy = u(t) —u(T/2) + R(1),

T/2

with |R(1)] < % [max{eKZ’, e KaI=n1 4 E<u + %) T}, (A.10)

whereu(r) = 3. (n/Bur) €% fy (1) &7V @but
So we can write/ (1) = j (1) + u(t — T/2)u(T/2), where

t 13

J(0) = f () ds + / LR(s)ds.

T/2 T/2

By the bound ofR(¢) givenin (A.10), the second integral can be boundedgy/8)[1+
&T?u/B]. Integrating once again by parts as above, we find that the first integral is bounded
by cg(11/B2)[1+ ¢(uT/B)], hence, by the condition imposed aff , it can be bounded by
wé/8p2, provided thaCo has been chosen small enough arisl large enough. Hence

. uc| cy , 1
nl<=| = T?+ = .
lj @] ,32|:c +c7u +8}

In addition

d j (1)
EJ

=plu(®) + R(1)| < 010%5 <% 4 %)

As a result||jllv < uc/4, providedc and c; have been chosen large enoudly, small
enough.

Now J(t) = j(t) + at + b, wherea,b € R, so that we may replacé with j in
(A.5). SincelJ ()] < |j O] +maxX|j O, |j(DINT +2)/T and|J (1) < |dj(z)/dt] +
/1) f1T+1|dj(s)/ds|ds, we obtain||J|y < 3||jllv < u3c/4. We have finally proved
that® mapsD into itself (in fact intoBzz,/4).

Now we must prove thad is a contraction® is differentiable and for = (v, w) € D,
(DD (2)[h, g)(@®) = (r@),s@)),r ands:[-1, T + 1] — R being defined by:

F(t) = a1(t).h(t) + b1(t)g(t), r(0)=r(T)=0,
L(s)(t) = az(t)-h(t) + ba(1)g(1),  s(0)=s(T) =0, (A.11)

where

ay(t) = —pdgy f (0 + 9T + (1), Q1 (O) + w(), 1 +6%),
b1(t) = —pdg f (0t +¢F +0(0), Or () +w(@).t +67),  az(t) = —b1(0),
ba(t) = coq Q7 (t) + w(t)) — cosQr(r)

+ g f (@t +9F + (1), O (1) + w(®), 1 +6%).
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By the same arguments as abaye B) € Vi x V (whereVs := C1(1, R%*)) defined by:
Ay=a1(t), AQ)=A(T)=0,  B@)=bi(t), B(0)=B(T)=0

satisfy||Allv, + | Bllv < cuaépe (Il llv, being defined in the same way [agy ).
Using an integration by parts, we can derive from (A.11) and the bound on
IAllv, + [ Bllv that

1 T2 h
7] sqzeg[(%nhuwngnw)+T(” ﬁ','v +||g||w>] (A12)

Therefore, forCp small enough|gr(¢)| < 1/8max|k|v, llgllw}. We derive also from
(A.12) that

2T3 MTZ

uT  cp
+ 7} max{||Alv. llgllw}.

Ir(n] < ClBEI:F + 53

which yields

max|iallv. ligllw}
8 b

_ 1
BA(L+c1nT?) Yre)| < 0145<MT//6 + C—l) max{|Iallv, lgllw} <

providedCy is small enough and; /¢ is large enough. Finally,

max|iallv. ligllw}

Irllv < 2

Using the properties of and the fact that

|laz(t).h (1) + ba(t)g ()| < casp(1+ caeT?) /BRIy + cas(lw@)] + 1) llglw

we easily derive|s|lw < maxX|klv, llgllw}/4 (again provided thatCo, more pre-
cisely Coc1 is small enough). We have proved that for a good choice,ef, Co,
ID®(2)[h, glll < |k, 2)|l/2 for z € D. Hence® is a contraction. As a result, it has a
unique fixed point; in D (which in fact belongs tdzz,,/4). This proves existence.

Now there remains to prove that (1), g 5 (1) areClfunctions of(x, 1). Let (9;{, 0y)
be fixed withTp := 6, — 65 and letA = {x | 0T — 65| < 1/4, 16~ — 6, | < 1/4}. For
reAly:=[-1/2,To+1/2] € [-1,6~ — 67 + 1], hence the restrictions’ andw? of
vy andw; to Ip are well defined.

Let Vo x Wo := CL(Io, R") x Cl(Io, R) be endowed with the norr || as defined
in (A.6). Definew:A — Vo x Wo by w(A) = zg. We shall justify briefly thaty
is differentiable and that| DY | < c1eu. zg is the unique solution inBz, of (A.4)
(with T =6~ — ™), which is equivalent tqu;, wy) = @(z3; 07,07, 0™, ¢, u), where
@ : Bz, x A x (0,u2) - Vo x Wp is smooth. Now, by the previous stepD, @ || <
1/2 everywhere, so that — D,® is invertible. Therefore, by the Implicit Function
Theoremy is CL. This proves thatx, 1) — @u (1) (respectively(, t) — g, (1)) and
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(A, 1) > @ (1) (respectively(r, t) — ¢, (1)) have continuous partial derivatives w.r.t.
rinthesef{(A,1)| —1/2+60% <t <1/2+67}, and by the standard theory of differential
equations, these partial derivatives have continuous extensiofis,an — 140+ <t <
1+ 67}, Finally, by (2.1),¢,. » andg, » depend continuously ok, ). O

Appendix B

Proof of Theorem 4.2. In order to prove Theorem 4.2 we need a preliminary lemma.
Observe thatt is a finite set which is symmetric with respect to the origin. Hence, if itis
not empty there exists € A% such thatp - 2 = (A, 2, R).

Lemma B.1.Assume thatt}, # ¢ and letp € A*ﬁ be suchthap - 2 =a:=a(A, 2, R).
Assume moreover that> 0 and defineE := [p]—. ThenAg:= AN E is a lattice ofE. In
addition

() a/BIp| <2/R, wherep =inf{lg - 2||q € (A0)" g, .},
(Ap)*={ge E|VxeAgq-xel}.

In particular o < 28.
(i) «(A, 2,V7R/2)<B.

Proof. SinceA is a lattice, it is not contained if. Hencep - A is a nontrivial subgroup
of Z, p- A =mZ for some integem > 1, which implies thap/m € A*. But p/m - 2 =
a/m and|p/m| < R, hence by the definition and the positivity ®f m = 1. As a result
there existst € A such thatp - ¥ = 1. ObviouslyAg + Zx € A. On the other hand, all
x € A can be written ag = (x - p)x + y, whereye A, y- p =0, i.e.,y € Ag. So the
reverse inclusion holds and we may write= Ag + Zx. As a consequencéy is a lattice
of £ and

A*:{reRl|r-A0CZandr-)EeZ}={q+ap|q€AE§, a€Z—q-x},

A}:{q+ap|qu3, aeZ—q-x,0< |q|2~|—a2|p|2§R2}.

If 8 = +o0 there is nothing more to prove. ff < 400, letg € (A())%R/2 be such that
q-$2=24.Let
* = 2 2\1/2
S:{aeR|q~|—ap€AR}={aeR|a€Z—q-x, |a|<(R —|q|) /|p|}

Sincelq|? <3R?/4,5 2 S :=(Z —q - ¥) N [—R/2|p|, R/2|p|]. Hence by the definition
ofa,forallae §, |(g +ap) - 2|=|B+aa| >a,ie,B/a¢ (—1—a,1l—a).
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As |p| < R, the interval[—R/2|pl|, R/2|p|] has length> 1 and must intersect
(Z — g - X). ThereforeS” # ¢, more preciselyy’ = {u,u +1,...,u + K}, for some integer
K >0, whereu =inf §’. As a result,

K
Blag| J-1-u—kl-u—k=(-1-u—K 1-u).
k=0

Now §' N[—1/2,1/2] # @, henceu + K > —1/2 and—1—u — K < 0. As a consequence
B/a >1—u. Since[—R/2|p|, —R/2|p| + 1] € [—R/2|p|, R/2|p|] intersectZ — g - X,
u < —R/2|p| + 1. ThereforeB/a > R/2|p|, which is (i). In particular, sincép| < R,
a < 28.

Finally there exists: € [-1,0) N (Z — g - %); ¢ + ap € A*, and|q + ap|?> = |q|* +
a®|p|?> < 3R?/4 4+ R? = TR?/4. Henceq + ap € A*ﬁR/Z' We have|(g + ap) - 2| =
|B + aa| < B, because-1 < a < 0 anda < 28. This proves (ii). O

Now we turn to the proof of Theorem 4.2. We first prove that the statement is true for
[ =1,witha; =1/2. HereA = AoZ for someig > 0, andA* = (L0)~1Z. We can assume
without loss of generality tha® > 0. If Ag < 28, then for allx € R, d(x, A) < §. Hence
T(A,$2,8)=0.

If Ao > 268, thenitis easy to see that(A, £2,8) = (Ao — 28)/£2 < Xo/$2. On the other
hand, Yio € Ai/za anda (A, £2,1/(28)) = 2 /20. The result follows.

Now we assume that the statement holds true up to dimensioh (I > 2). We shall
prove it in dimensior.

Fix R > 0 and definég = (4a? ;/3+ 4¥/2/R. We claim that:

(@ If A, =0thenT (A, $2,6r) =0.
(b) If A% #0, let p e A} be such thap - 2 = o :=a(A, 2, R), and defings as in
LemmaB.1. Then

T(A,$2,8g) <max{at, 1)

Postponing the proof of (a) and (b), we show how to defineln the case (b), by
Lemma B.1(ii),T (A, 2, 8r) < a(A, 2, v/7R/2)~L. This estimate obviously holds in the
case (a) too. Hence for all > 0,

T(A, 2, (4a? 1/3+4)"?/R) <a(A, 2,VTR/2)

As a consequence, the statement of Theorem 4.2 holdsvith(v/7(4a? ;/3+ 41/?/2).

There remains to prove (a) and (b). First assume#jat= ¢). Let p € A*\ {0} be such
that for all p’ € A*\ {0}, |p| < |p’|. Then|p| > R. Let E, Ag be defined fronp as in
Lemma B.1.

Arguing by contradiction, we assume tr(ato)%R/z # (). By the same arguments as

previously there exisj € (AO)T/éR/Z anda € [—1/2,1/2] such thayy + ap € A*. But
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lg +ap|? = |q|> + a®|p|*> < (3/4)R? + |p|?/4 < |p|?

and this contradicts the definition gf. Hence (AO)T/éR/Z = @ and by the iterative

hypothesis, all points of lies at a distance fromg less than 2,_1/+/3R.

From the proof of Lemma B.1, there existi& A suchthaip-x =1 andA = Ao+ Zx.
Therefore for allx € R, there isx’ € x + A such thatix’ - p| < 1/2. This implies that
d(x', E) < 1/(2|p]) < 1/(2R) and hence thaf (x', Ao) < (4a? 1/3+ 1/HY2/R < 8.
Hence the distance from any pointBf to A is not greater thadg. This completes the
proof of (a).

Next assume thatly, # ¢ and letp be as in Lemma B.1. Define and g in the same
way as in LemmaB.1. Let € R'. Again A = A+ Zi for somex € A suchthap -x =1,
hence there exists € x + A such thatp - x” € [0, 1). We have:

x/—y—i—wp .Q—U—i—ap
Ip2™” IpI2"

with y, U € E = [p]*+, w = p - x’ € [0, 1). We shall assume that> 0 (if « = 0, there is
nothing to prove). Let = w/a, and consider the time interval defined by

J=10,1/8] ifi<1/p, J=[i—1/B,7] ifi=1/B.

J c [0,maxX1/8,1/«}], and it is enough to prove that there existe J such that
d(x’',t£2 + Ag) < 8g. The length ofJ is not less than /8. Hence by the iterative
hypothesis, there existse J such thatd(y, (U + Ag) < 2a1_1/(«/§R) (notice that for
allg € Af, q-U =q - £2, so that the linear flowrU) creates a@_1/(v/3R)-netof E/Ag
in time ~1). We have:

4af
3RZ

(t—1ta
[Pl

2 2
d(x', 12 + Ag)® = ( ) +d(y,tU + Ag)® < <$> +

Hence, by Lemma B.1(}(x', 182 + Ao) < (4a? ,/3+4Y/?/R. This completes the proof
of (b). O

Note added in proof

After this paper was accepted we learned of the preprints:

D. Treshev, Evolution of slow variables in a priori unstable Hamiltonian systems,
Preprint.

A. Delshams, R. de la Llave, T.M. Seara, A geometric mechanism for diffusion
in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous
verification on a model, Preprint.
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